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AXIOMS FOR THE CATEGORY OF HILBERT SPACES

CHRIS HEUNEN AND ANDRE KORNELL

ABSTRACT. We provide axioms that guarantee a category is equivalent to that of continuous
linear functions between Hilbert spaces. The axioms are purely categorical and do not
presuppose any analytical structure. This addresses a question about the mathematical
foundations of quantum theory raised in reconstruction programmes such as those of von
Neumann, Mackey, Jauch, Piron, Abramsky, and Coecke.
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What is the deeper connection between
these fwo kinds of limits?
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ABSTRACT. We characterise the category of finite-dimensional Hilbert spaces

and linear contractions using simple category-theoretic axioms that do not
refer to norms, continuity, dimension, or real numbers. Our proof directly

relates limits in category theory to limits in analysis, using a new variant of

the classical characterisation of the real numbers instead of Soler’s theorem.
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Theory Categorical setting
homological algebra abelian categories
probability theory Markov quregories

differential geome{‘rﬂ Tangent categories



Reformu\quing a theory category theoretically can
- unify and generalise known results,
. reveal new results,

- simplify it, making it more accessible.



Theory
homological algebra
probability theory
differentiql geometry

functional analysis

Ca’recaorico\\ Se{'\’ing
abelian categories
Markov quregories

Tangent categories
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R*—CGergor‘ieS are d new CCT‘Q OPI.CQ\ abS"'rQC'HOf\
of’ algebraic aspects of Hilbert spaces

R*-CATEGORIES

THE HILBERT-SPACE ANALOGUE OF
ABELIAN CATEGORIES

MATTHEW DI MEGLIO

ABsTrACT. This article introduces R*-categories—an abstraction of categories
exhibiting the “algebraic” aspects of the theory of Hilbert spaces. Notably, finite

biproducts in R*-categories can be orthogonalised using the Gram—Schmidt
process, and generalised notions of positivity and contraction support a variant

of Sz.-Nagy’s unitary dilation theorem. Underpinning these generalisations is
the structure of an involutive identity-on-objects contravariant endofunctor,
which encodes adjoints of morphisms. The R*-category axioms are otherwise
inspired by those for abelian categories, comprising a few simple properties
of products and kernels. Additivity is not assumed, but nevertheless follows.
In fact, the similarity with abelian categ s runs deeper—R *-categories are
quasi-abelian and thus homological. Examples include the category of unitary
representations of a group, the category of finite-dimensional inner product
modules over a partially ordered division ring, and the category of self-dual
Hilbert modules over a W*-algebra.
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. Additivity (-1 exists)

- Canonical parﬁq\ order and inner products

f*£>0 (flay =f*qg
- Symmetry (If a>1 fhen a invertible)
» Contractions (Morphisms f with £*f< 1)

. Monotone completeness
(Bouno\ea\ increasing nets have Suprema)
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Other *-categories with codilators of all morphisms:
+ Sets and partial bijec’rions
. Sets and bitotal relations

+ Finite probabity spaces and stochastic maps
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in Isometry
*~ and M*categories

for Hilbert theory - Axioms for Isome‘frg

- Dilators relate isometries | « Axioms for a category of
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https:/mdimeglio. github.io
m-dimeglio@ed.ac.uk



Rewcormu\QHr\g a theory category theoretically can

- unify and generalise known results,

. reveal new results,

- simplify if, making it more accessible.



Every morphism in FinPS hos a dilator

bloom-shriek factorisation

“The information loss
of a stochastic map”
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