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· unify and generalise known results,

· reveal new results
,

· simplify it , making it more accessible.
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&*-categories are a new categorical abstraction
of algebraic aspects of Hilbert spaces

M *- categories also include analytic aspects
Articles in preparation 14
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Other categories with codilators of all morphisms :

· Sets and partial bijections

· Sets and bitotal relations

· Finite probabity spaces and stochastic maps
If is the Bayesian inverse of f)
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Reformulating a theory category theoretically can

· unify and generalise known results,
e

.g. Discrete and continuous cases of the Blackwood-Sherman-Stein theorem

on statistical experiments unified for the first time via Markov categories

· reveal new results
,

e.g. convergence in mean for backward martingales indexed by an arbitrary net
was proved for the first time (according to the authors) using dagger categories

· simplify it , making it more accessible.
e

.g. to theoretical computer scientists who already know category theory
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