ENRICHED BISIMULATIONS

MATTHEW DIMEGLIO (Joint work with Bryce Clarke)

PROOFS AND ALGORITHMS SEMINAR JANUARY 2024 Propositional Modal Logic

SEMANTICS

SEMANTICS

SEMANTICS

Which worlds satisfy the same modal formulae?

3

Those related by a bisimulation.* (or p-relation or zig-zag relation)

*assuming finitely many worlds

Communication and Concurrency

ReaderPair

ReaderPair

ReaderPair

ReaderPair

ReaderPair

ReaderPair

Internal actions can sometimes be observed indirectly

These systems are not observationally equivalent

Given a set \mathcal{A} of actions (and their complements)

q

systems are modelled as $A \sqcup \{\tau\}$ -labelled transition systems

behavioural equivalence is captured by weak bisimulation

S.	$\xrightarrow{\alpha} S$	
• • •		
Т		

 $a \neq \tau$

S —	T	→ S"
• • •		
Т		

Enriched Graphs and Categories

ENRICHED GRAPHS A suplattice is a partially ordered An L-enriched graph G is set (L, \leq) with suprema. • a set ob(G) of objects • $G(a,b) \in L$ for all $a,b \in ob(G)$

Examples: • $\mathbb{B} = \{\bot, \intercal\}$ ordered by \Rightarrow

- $\cdot P(A)$ ordered by \subseteq
- · [0,∞] ordered by ≥

Examples: Kripke frames

·A-labelled transition systems

·weighted graphs

A quantale is a suplattice (Q, \leq) A Q-enriched category C is a and a monoid (Q, , I) such that Q-enriched graph such that

ENRICHED CATEGORIES $X \otimes and \otimes X$ preserve suprema. $I \leq C(a,a)$ and $C(a,b) \otimes C(b,c) \leq C(a,c)$

Examples:

- $\mathbb{B} = \{\bot, \intercal\}$ with \land and \intercal
- $P(A^*)$ with $S \otimes T = \{st: s \in S, t \in T\}$ $I = \{\epsilon\}$
- \cdot [0, ∞] with + and 0

Examples: • reflexive transitive Kripke frames . generalised A-labelled transition systems · Lawvere metric spaces

Enriched Lenses Let (L,\leq) be a suplattice, and let S and H be L-enriched graphs.

A lens $F: \mathcal{G} \rightarrow \mathcal{H}$ is a function $F: ob(\mathcal{G}) \rightarrow ob(\mathcal{H})$ such that

$$\begin{split} & S(a,b) \leq \mathcal{H}(Fa,Fb) \\ & \text{and} \\ & \mathcal{H}(Fa,y) \leq \sup_{b \in F'\{y\}} S(a,b) \, . \end{split}$$

ENRICHED LENSES Let (L, \leq) be a suplattice, and let Example (Kripke frames): S and H be L-enriched graphs. $(L \leq) = (\mathbb{R} \Rightarrow)$

A lens $F: G \rightarrow \mathcal{H}$ is a function $F: ob(G) \rightarrow ob(\mathcal{H})$ such that

$$\begin{split} S(a,b) &\leq \mathcal{H}(Fa,Fb) \\ \text{and} \\ \mathcal{H}(Fa,y) &\leq \sup_{b \in F'\{y\}} S(a,b) \,. \end{split}$$

 $(L,\leqslant) = (\mathbb{B},\Rightarrow)$ p-morphism or zig-zag morphism $a \rightarrow b \Rightarrow Fa \rightarrow Fb$ $Fa \rightarrow y \implies \exists b \in F^{-1}\{y\}. a \rightarrow b$

ENRICHED LENSES Let (Q, \leq, ∞, I) be a quantale, and let Example (labelled transition systems): C and D be L-enriched categories. $(Q, \leq, \otimes, I) = (\mathcal{P}(A^*), \subseteq, \otimes, \{\varepsilon\})$ A lens $F: \mathbb{C} \to \mathbb{D}$ is a function functional $F: ob(C) \rightarrow ob(D)$ such that weak bisimulation $C(a,b) \leq D(Fa,Fb)$ $a \xrightarrow{s} b \implies Fa \xrightarrow{s} Fb$ and $Fa \rightarrow y \implies \exists b \in F' \{y\}. a \rightarrow b$ $C(Fa,y) \leq \sup_{b \in F' \{y\}} D(a,b).$

ENRICHED LENSES 14 Let (Q, \leq, ∞, I) be a quantale, and let Example (lawvere metric spaces): C and D be L-enriched categories. $(Q, \leq, \otimes, I) = ([0, \infty], \geq, +, 0)$ A lens $F: \mathbb{C} \rightarrow \mathbb{D}$ is a function weak submetry $F: ob(C) \rightarrow ob(D)$ such that $C(a,b) \leq D(Fa,Fb)$ $d(a,b) \ge d(Fa,Fb)$ and and $C(Fa,y) \leq \sup_{b \in F'\{y\}} D(a,b).$ $d(Fa,y) \ge \inf_{b \in F'\{y\}} d(a,b)$

ENRICHED BISIMULATIONS Let (L,<) be a suplattice, and let S and H be L-enriched graphs.

A bisimulation $R: G \rightarrow H$ is a relation $R:ob(G) \rightarrow ob()-()$ such that if $a R \propto$ then $G(a,b) \leq \sup_{y:bRy} H(x,y)$ and $\mathcal{H}(x,y) \leq \sup_{b:bRy} \mathcal{G}(a,b).$

ENRICHED BISIMULATIONS Let (L,\leq) be a suplattice, and let Example (Kripke frames): S and H be L-enriched graphs. $(L,\leq) = (\mathbb{B},\Rightarrow)$

A bisimulation $R: G \rightarrow H$ is a relation $R: ob(G) \rightarrow ob(H)$ such that if a $R \propto$ then

 $\begin{array}{l} \Im(a,b) \leq \sup_{y:bRy} \Im(x,y) \\ and \\ \Im(x,y) \leq \sup_{b:bRy} \Im(a,b). \end{array}$

p-relation or zig-zag relation $a \rightarrow b \implies \exists y \in R\{b\}. x \rightarrow y$ $x \rightarrow y \implies \exists b \in R^{-1}\{y\}. a \rightarrow b$

ENRICHED BISIMULATIONS Let (Q, \leq, ∞, I) be a quantale, and let Example (labelled transition systems): C and D be L-enriched categories. $(Q, \leq, \otimes, I) = (\mathcal{P}(A^*), \subseteq, \otimes, \{\epsilon\})$ A bisimulation $R: C \rightarrow D$ is a weak bisimulation relation $R:ob(\mathbb{C}) \rightarrow ob(\mathbb{D})$ such that if $a R \propto$ then $G(a,b) \leq \sup_{y:bRy} \mathcal{H}(x,y)$ $a \xrightarrow{s} b \Longrightarrow \exists y \in R\{b\}, x \xrightarrow{s} y$ and $x \xrightarrow{s} y \Longrightarrow \exists b \in R^{-1}\{y\}. a \xrightarrow{s} b$ $\mathcal{H}(x,y) \leq \sup_{b:bRy} \mathcal{G}(a,b).$

PROPOSITION:

 $ob(\mathcal{R}) = R \subseteq ob(\mathcal{A}) \times ob(\mathcal{B})$ $\mathcal{R}((\overset{\circ}{b}), (\overset{\circ}{b})) = \mathcal{A}(a, a') \wedge \mathcal{B}(b, b')$

Enriched bisimulations

- · generalise several common kinds of bisimulation
- · are equivalence classes of spans of enriched lenses

QUESTIONS

What are the bisimulations for other common quantales?
What other parts of bisimulation theory generalise?

https://mdimeglio.github.io https://bryceclarke.github.io