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Internal actions can sometimes be observed indiredrly

These systems are not observationally equivalent



Given a set A of actions (and their complements)

systems are modelled os

A.u{T}-labelled fransition systems

behavioural equivalence is captured by
weak bisimulation



A weak bisimulation befween two systems is a relation
between their sets of sfotes such that
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Enriched Graphs
and Categories



A suplattice is a partially ordered | An L-enriched graph S is
sef (L,<) with suprema. + a set ob(S) of objects
- Ga,b) el forall abeab(g)

+B={LT} ordered bg = *Kripke frames
*P(A) ordered by < ‘A-labelled transition systems

- [0,0<] ordered by > * weighted graphs



A quantale is a suplattice (Q <) | A G-enriched category C is a
and a monoid (@.®,T) suchthat | Q-enriched graph suchthat
Xe_and _aX preserve suprema. I<C(a.a)and Clo.bleClbc)<Clag)

B={L T with A and T * ref lexive transitive Kripke frames

DAk o O®T={st:ses teTh | | generalised A-labelled
PIR) with T={¢} transition systems

* [0,0<] with + and O * Lawvere metric spaces



Let (L£) be a suplattice, and lef
Sand H be L-enriched graphs.

A lens F:G>H is a function
F:ob(G)- ob(H) such that

Sla,b) € H(Fa.,Fb)
and

H(Fa,y) < sup G(a.,b).

be F'{y}



ENRICHED LeNses
Let (L) bea Sup|aH|'ce, and let Examp|e (Kripk)e frames)-
Sand H be L-enriched graphs. (L<)=(B.=

A lens F:G>H is a function

F+0b(G)> ob{(H) such that p-morphism or 4R
S(a,b) € H(Fa,Fb) o—b = Fa—Fb
and

H(Fa.y) < sup G(a.,b). Fa—y = dbeFY{y}. a—b

be F'{y}



Let Q£ ®1) bea quantale, and let labelled transition systems
C and D be - enriched Ca+egor|es. Q<o )= (P(AY. c o )

A lens F:C>Dis a function functional
F:0b(C)-= ob(D) such that weak bisimulation
Cla,b) <°D(Fo.,Fb) a—b = Fa=Fb
and

ClFay) < supD(a,b). Fasy = FbeFY{uy. a b

be F'{y}



ENRICHED Lenses

Let Q¢ 21) be a quantale, and let | Example(lowvere metric spaces):

C and ‘D be L—enriChed CO'|'€90rieS. (Q,s,Q, I) = ([o.2] 2.+, 0)

A lens F:C>Dis a function

F: 0b(C)> ob(D) such that weak submetry
Cla.b) <°D(Fa,Fb) d(a,b) > d(Fa, Fb)
and anc

C(Fasxj) < supD(a,b). d(Fay) > infdla.b).

be F'{y} be F'{u}



Let (L£) be a suplattice, and lef
Sand H be L-enriched graphs.

A bisimulation R:G+—H Is a
relation R:0b(G)—- ob(H)
such that if aR x then

Sla.b) < supHlx,y)

Lj‘-bRﬁ
and

Hx,y) < supSla.b).

b'—bRg
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Let (L) be a suplattice, and let | Example (Kripke frames):
Sand H be L-enriched graphs. (L<)=(B.=)

A bisimulation R:G+—H Is a . o
elation R:b(G)-sob(}() | P-relation or “EA
such that if aR x then

Sla.b) < supHlx,y) a—b = JyeR{b}. x—y
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and
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x—y —>Jbe R"{Lﬁ. a—b



Let (Q¢21) be a quantale, and let labelled fransition systems
Cand D be L-enriched Ca+egories.

Q,¢2I)=(P(A%), <. ® {€})
A bisimulation R:C+~Dis a |

relation R:0b(C)-+0b(D) weak bisimulation
such that if aR x then

Sla.b) < supHlx,y) a>b = JyeR{b}. x =5y

Lj‘-bR3
and
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x>y =>JdbeRul. a =5 b
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Enriched bisimulations
- generalise several common kinds of bisimulation
. are equivalence classes of spans of enriched lenses

-What are the bisimulations for other common quantales ?
» What other parts of bisimulation theory generalise ?

https://mdimeglio. github.io
https://bryceclarke.github.io



