ENRICHED BISIMULATIONS

Matthew Di Meglo (Joint work with Bryce Clarke)

PROOFS AND ALGORITHMS SEMINAR
JANUARY 2024

Propositional
Modal Logic

Semantics

Which worlds satisfy the same modal formulae?

Those related by a bisimulation.* (or p-relation or zig-zag relation)

Communication and Concurrency

Two different systems can have the same observable behaviour

Two different systems can have the same observable behaviour

Two different systems can have the same observable behaviour

Two different systems can have the same observable behaviour

Two different systems can have the same observable behaviour

Two different systems can have the same observable behaviour

Two different systems can have the same observable behaviour

Two different systems can have the same observable behaviour

Internal actions can sometimes be observed indirectly

These systems are not observationally equivalent

Given a set \mathcal{A} of actions (and their complements)

systems are modelled as $\mathcal{A} \sqcup\{\tau\}$-labelled transition systems

behavioural equivalence is captured by weak bisimulation

A weak bisimulation between two systems is a relation between their sets of states such that

$$
S \longrightarrow S^{\prime}
$$

$$
a \neq \tau
$$

A weak bisimulation between two systems is a relation between their sets of states such that

A weak bisimulation between two systems is a relation between their sets of states such that

A weak bisimulation between two systems is a relation between their sets of states such that

A weak bisimulation between two systems is a relation between their sets of states such that
\square
$a \neq \tau$

A weak bisimulation between two systems is a relation between their sets of states such that

$$
a \neq \tau
$$

A weak bisimulation between two systems is a relation between their sets of states such that
\square

A weak bisimulation between two systems is a relation between their sets of states such that

Enriched Graphs and Categories

A suplattice is a partially ordered An L-enriched graph S is set (L, \leqslant) with suprema.

Examples:

- $B=\{\perp, T\}$ ordered by \Rightarrow
- $P(A)$ ordered by \subseteq
- $[0, \infty]$ ordered by \geqslant
- $G(a, b) \in L$ for all $a, b \in o b(S)$

Examples:

- Kripke frames
- A-labelled transition systems
- weighted graphs

A quantale is a suplattice $(Q, \leqslant) \mid A$-enriched category C is a and a monoid (Q, \otimes, I) such that X_{\otimes} _ and _ \propto X preserve supremo. Q-enriched graph such that $I \leqslant C(a, a)$ and $C(a, b) \& C(b, c) \leqslant C(a, c)$

Examples:

- $\mathbb{B}=\{\perp, T\}$ with \wedge and T
- $P\left(A^{*}\right)$ with $S \otimes T=\{s t: s \in S, t \in T\}$

$$
I=\{\varepsilon\}
$$

- $[0, \infty]$ with + and 0

Examples:

- reflexive transitive Kripke frames
- generalised A-labelled transition systems
- Lawvere metric spaces

Let (L. \leqslant) be a suplattice, and let G and \mathcal{H} be L-enriched graphs.

A lens $F: S \rightarrow\}$ is a function $F: o b(G) \rightarrow o b(F)$ such that

$$
\begin{gathered}
S(a, b) \leqslant \mathcal{H}(F a, F b) \\
\text { and } \\
\mathcal{H}(F a, y) \leqslant \sup _{b \in F(G)} S(a, b) .
\end{gathered}
$$

Enriched Lenses

Let (L.S) be a suplattice, and let Example (Kripke frames): G and \mathcal{H} be L-enriched graphs.

$$
(L, \leqslant)=(\mathbb{B}, \Rightarrow)
$$

A lens $F: S \rightarrow \mathcal{Y}$ is a function
$F: o b(G) \rightarrow o b(F)$ such that

$$
\begin{array}{c|c}
S(a, b) \leqslant \mathcal{H}(F a, F b) & a \rightarrow b \Rightarrow F a \rightarrow F b \\
\begin{array}{c}
\text { and } \\
\mathcal{H}(F a, y) \leqslant \sup _{b \in F G G} S(a, b) .
\end{array} & F a \rightarrow y \Rightarrow \exists b \in F^{-\{ }\{y\} \cdot a \rightarrow b
\end{array}
$$

C and D be L-enriched categories.
A lens $F: C \rightarrow D$ is a function
$F: o b(C) \rightarrow o b(D)$ such that

$$
\begin{aligned}
C(a, b) & \leqslant D(F a, F b) \\
& \text { and } \\
C(F a, y) & \leqslant \sup _{b \in F \cdot\{,\{3} D(a, b) .
\end{aligned}
$$

$$
(Q, \leqslant, \otimes, I)=\left(P\left(A^{*}\right), \subseteq, \otimes,\{\varepsilon\}\right)
$$

functional
weak bisimulation

$$
a \xrightarrow{s} b \Rightarrow \mathrm{Fa} \xrightarrow{s} \mathrm{Fb}
$$

$$
F a \xrightarrow{s} y \Rightarrow \exists b \in F^{-1}\{y\} \cdot a \xrightarrow{s} b
$$

Let $(Q \leq \Phi, I)$ be a quantale, and let \dagger Example (lawvere metric spaces):
C and D be L-enriched categories.

$$
(Q, \leqslant, \otimes, I)=([0, \infty], \geqslant,+, 0)
$$

A lens $F: C \rightarrow D$ is a function
$F: o b(C) \rightarrow o b(D)$ such that

$$
\begin{aligned}
C(a, b) & \leqslant D(F a, F b) \\
& \text { and } \\
C(F a, y) & \leqslant \sup _{b \in F \cdot\{y]} D(a, b) .
\end{aligned}
$$

Let (L, \leqslant) be a suplattice, and let \mathcal{G} and \mathcal{H} be L-enriched graphs.

A bisimulation $R: G \rightarrow\}$ is a relation $R: o b(G) \rightarrow o b(J C)$ such that if $a R x$ then

$$
\begin{aligned}
& Y(a, b) \leqslant \sup _{y \rightarrow \text { bry }} H(x, y) \\
& \text { and } \\
& H(x, y) \leqslant \sup _{b \cdot b \mathrm{by}} Y(a, b) .
\end{aligned}
$$

Enriched Bisimulations

Let (L. \leqslant) be a suplattice, and let \dagger Example (Kripke frames): \mathcal{G} and \mathcal{H} be L-enriched graphs.

$$
(L, \leqslant)=(\mathbb{B}, \Rightarrow)
$$

A bisimulation $R: G \rightarrow H$ is a relation $R: o b(S) \rightarrow o b(\mathcal{H})$ such that if $a R x$ then

$$
S(a, b) \leq \sup _{\substack{y b x y y}} \mathcal{H}((x, y)
$$

$$
\mathcal{H}(x, y) \leq \sup _{b \in \operatorname{bey}} \oint(a, b) \text {. }
$$

$$
\mathrm{p} \text {-relation or zig-zag } \begin{gathered}
\text { relation }
\end{gathered}
$$

$$
a \rightarrow b \Rightarrow \exists y \in R\{b\} . x \rightarrow y
$$

$$
x \rightarrow y \Rightarrow \exists b \in R^{-1}\{y\} \cdot a \rightarrow b
$$

Let $(Q \leq \Phi, I)$ be a quantale, and let Example (labelled transition systems): C and D be L-enriched categories.

$$
(Q, \leqslant, \Phi, I)=\left(P\left(A^{*}\right), \subseteq, \otimes,\{\varepsilon\}\right)
$$

A bisimulation $R: C \rightarrow D$ is a relation $R: o b(C) \rightarrow o b(D)$ such that if $a R x$ then

$$
\begin{array}{l|l}
Y(a, b) \leqslant \sup _{y b R y} H(x, y) & a^{s} b \Rightarrow \exists y \in R\{b\} \cdot x^{s} y \\
\text { and } y \\
H\left((x, y) \leqslant \sup _{b \cdot b y} Y(a, b) .\right. & x^{s} y \Rightarrow \exists b \in R^{-1}\{y\} \cdot a \xrightarrow{s} b
\end{array}
$$

weak bisimulation

$$
\begin{aligned}
& A \stackrel{f_{1}}{+} \xrightarrow{f_{2}} B \quad \mapsto \quad A \xrightarrow{\text { Im }\{f, f\rangle} B \\
& V_{\text {-enriched od lenses }}^{\text {spen }} \xrightarrow{\text { split suriection }} \\
& \text { V-enriched } \\
& \text { bisimulations } \\
& A \underset{r_{1}}{\stackrel{-1}{r_{2}}} R \text { B } \\
& \text { H } \\
& A \xrightarrow[R]{\stackrel{L}{\longrightarrow}} B \\
& o b(R)=R \subseteq o b(A) \times o b(B) \\
& \left.\mathcal{R}\left(\left(b^{a}\right),\left(a^{\circ}\right)\right)\right)=A\left(a, a^{\prime}\right) \wedge B\left(b, b^{\prime}\right)
\end{aligned}
$$

Enriched bisimulations

- generalise several common kinds of bisimulation
- are equivalence classes of spans of enriched lenses

Questions

-What are the bisimulations for other common quantales?

- What other parts of bisimulation theory generalise?
https://mdimeglio. github.io https://bryceclarke.github.io

