Universal indexed categories

Matthew Di Meglio

THE UNIVERSITY
of EDINBURGH

Categorical Late Lunch

THE UNIVERSITY of EDINBURGH
(1) Introduction to indexed category theory
(2) Comonoid indexing of nice symmetric monoidal categories
(3) Universality of self indexing and comonoid indexing

- A \mathcal{V}-enriched category \mathbf{C} has a set \mathbf{C}_{0} and a $\left(\mathbf{C}_{0} \times \mathbf{C}_{0}\right)$-indexed family of objects of \mathcal{V}

$$
(\mathbf{C}(X, Y))_{(X, Y) \in \mathbf{C}_{0} \times \mathbf{C}_{0}} .
$$

- An \mathbf{E}-internal category \mathbf{C} has an object \mathbf{C}_{0} of \mathbf{E} and a morphism of \mathbf{E}

$$
\langle s, t\rangle: \mathbf{C}_{1} \rightarrow \mathbf{C}_{0} \times \mathbf{C}_{0}
$$

- A \mathcal{V}-enriched functor $F: \mathbf{C} \rightarrow \mathbf{D}$ consists of a function $F_{0}: \mathbf{C}_{0} \rightarrow \mathbf{D}_{0}$ and a $\left(\mathbf{C}_{0} \times \mathbf{C}_{0}\right.$)-indexed family of morphisms of \mathcal{V}

$$
\left(\mathbf{C}(X, Y) \xrightarrow{F_{X, Y}} \mathbf{D}\left(F_{0} X, F_{0} Y\right)\right)_{(X, Y) \in \mathbf{C}_{0} \times \mathbf{c}_{0}} .
$$

- An E-internal functor $F: \mathbf{C} \rightarrow \mathbf{D}$ consists of a morphism $F_{0}: \mathbf{C}_{0} \rightarrow \mathbf{D}_{0}$ of \mathbf{E} and a morphism of \mathbf{E}

$$
F_{1}: \mathbf{C}_{1} \rightarrow\left(\mathbf{C}_{0} \times \mathbf{C}_{0}\right) \times\left(\mathbf{D}_{0} \times \mathbf{D}_{0}\right) \mathbf{D}_{1} .
$$

What does it mean to have a family of objects or morphisms indexed by something other than a set?

Indexed categories

Let \mathbf{S} be a category.

Definition

An S-indexed category \mathbb{C} is a pseudofunctor $\mathbb{C}: \mathbf{S}^{\mathrm{op}} \rightarrow$ Cat.
Write \mathbf{C}^{J} instead of $\mathbb{C}(J)$ and Δ_{r} instead of $\mathbb{C}(r)$.
Suppose that \mathbf{S} has a chosen terminal object 1.

Definition

The underlying category of an S-indexed category \mathbb{C} is the category \mathbf{C}^{1}. We also call \mathbb{C} an indexing of \mathbf{C}^{1}.

Write Δ_{\jmath} instead of $\Delta_{!}$, where $!_{\jmath}: J \rightarrow 1$.

Think of Δ_{J} as a diagonal functor and Δ_{r} as an indexed diagonal functor.

Definition

An indexed category has indexed sums if each Δ_{r} has a left adjoint Σ_{r} and these satisfy the left Beck-Chevalley condition.

Write Σ_{J} instead of $\Sigma_{!}$, where $!_{\jmath}: J \rightarrow 1$.

Definition

An indexed category has indexed products if each Δ_{r} has a right adjoint Π_{r} and these satisfy the right Beck-Chevalley condition.

Write Π_{\jmath} instead of $\Pi_{!}$, where $!_{\jmath}: J \rightarrow 1$.

Set-indexing of a category C

$$
\left(X_{j}\right)_{j \in J} \stackrel{\Sigma_{r}}{\longmapsto}\left(\sum_{j \in r^{-1 k}} X_{j}\right)_{k \in K}
$$

$$
\left(Y_{r j}\right)_{j \in J} \stackrel{\Delta_{r}}{\longleftrightarrow}\left(Y_{k}\right)_{k \in K}
$$

$$
\left(X_{j}\right)_{j \in J} \stackrel{\Pi_{r}}{\longrightarrow}\left(\prod_{j \in r^{-1} k} X_{j}\right)_{k \in K}
$$

in Set
$\mathbf{C} / J \underset{\Delta_{r}}{\stackrel{\Sigma_{r}}{\stackrel{~}{\longrightarrow}}} \mathbf{C} / K$

in C

$$
\mathbf{C} / J \underset{\Delta_{r}}{\stackrel{\Sigma_{r}}{\stackrel{\perp}{\longrightarrow}}} \mathbf{C} / K
$$

A right adjoint to Σ_{r} is a choice, for each $(Y, y) \in \mathbf{C} / K$, of $\Delta_{r}(Y, y) \in \mathbf{C} / J$ and $\epsilon_{y}^{r}: \Sigma_{r} \Delta_{r}(Y, y) \rightarrow(Y, y)$ such that $\left(\Delta_{r}(Y, y), \epsilon_{y}^{r}\right)$ is terminal in $\Delta_{r} /(Y, y)$.

Canonicity of self indexing (informally)

Let \mathbf{C} be a finitely complete category.
Equivalently, \mathbf{C} is a cartesian monoidal category with equalisers.
The self indexing of \mathbf{C} seems to be canonical, providing the foundation for

- categories internal to \mathbf{C}
- dependent lenses/polynomials in C
- multivariate polynomial functors in C
- models of dependent type theories in C

Is there still a canonical indexing of \mathbf{C} if the monoidal product of \mathbf{C} is not cartesian?

of EDINBURGH

(1) Introduction to indexed category theory

(2) Comonoid indexing of nice symmetric monoidal categories
(3) Universality of self indexing and comonoid indexing
cartesian monoidal category C with equalisers

symmetric monoidal category \mathcal{V}

$\leadsto \quad$ with coreflexive equalisers preserved by all $X \otimes-\otimes Y$

Example

- A partial function $f: A \rightarrow B$ is a total function $\bar{f}: A \rightarrow B+1$.
- Let Par denote the category of sets and partial functions.
- The cartesian product on Set gives a symmetric monoidal product on Par.
- The equaliser of $f, g: A \rightarrow B$ in Par is the equaliser of $\bar{f}, \bar{g}: A \rightarrow B+1$ in Set, but viewed as a partial function.
- Can check that equalisers in Par are preserved by all $X \otimes-\otimes Y$

cartesian monoidal category C with equalisers symmetric monoidal category \mathcal{V} with nice coreflexive equalisers

C \leadsto CoComon $_{\nu}$

Comonoids

A (cocommutative) comonoid J consists of
object comultiplication counit
subject to the axioms

coassociativity

8-n
cocommutativity

Comonoid morphisms

A comonoid morphism $r: J \rightarrow K$ consists of

subject to the axioms

preserves counit

preserves comultiplication

Comonoids in a cartesian monoidal category

Let \mathbf{C} be a cartesian monoidal category.
Proposition
CoComon $_{\mathrm{C}} \cong \mathrm{C}$

Partial proof.

For a comonoid (J, δ, ϵ) in \mathbf{C},

- $\epsilon: J \rightarrow 1$ is the unique such map,
- $\delta: J \rightarrow J \times J$ is of the form $\left\langle\delta_{1}, \delta_{2}\right\rangle$, and the counitality laws imply that $\delta_{1}=\delta_{2}=$ id $_{J}$.

Proposition

CoComon $_{\text {Par }} \cong$ Set

Partial proof.

For a comonoid (J, δ, ϵ) in Par,

- the counit law $\left(J \xrightarrow{\delta} J \otimes J \xrightarrow{\epsilon \otimes \text { id }^{\prime}} I \otimes J \cong J\right)=\left(J \xrightarrow{\text { id }^{\prime}} J\right)$ implies that δ is total and so $\delta=\left\langle\delta_{1}, \delta_{2}\right\rangle$ in Set; it also implies that $\delta_{2}=$ id $_{J}$.
- the other counit law similarly implies that $\delta_{1}=\mathrm{id}_{J}$, and also that ϵ is total. Let $r:\left(J, \delta_{J}, \epsilon_{J}\right) \rightarrow\left(K, \delta_{K}, \epsilon_{K}\right)$ be a comonoid morphism in Par.
- As ϵ_{J} is total, the counit preservation law $\left(J \xrightarrow{r} K \xrightarrow{\epsilon_{K}} I\right)=\left(J \xrightarrow{\epsilon_{J}} I\right)$ implies that $r: J \rightarrow K$ is also total.
cartesian monoidal category C with equalisers
symmetric monoidal category \mathcal{V} with nice coreflexive equalisers

$$
\begin{aligned}
\mathrm{C} & \rightsquigarrow \text { CoComon }_{\mathcal{V}} \\
\mathrm{C} / J & \rightsquigarrow \text { Comod }_{V} J
\end{aligned}
$$

Comodules

For a comonoid J, a J-comodule (X, x) consists of

subject to the axioms

Comodule morphisms

A J-comodule morphism $f:(X, x) \rightarrow\left(X^{\prime}, x^{\prime}\right)$ consists of

subject to the axioms

preserves coaction

Comodules in a cartesian monoidal category

Let \mathbf{C} be a cartesian monoidal category.

Proposition

$\operatorname{Comod}_{\mathrm{C}} J \cong \mathrm{C} / J$

Comodules in Par

Proposition

Comod $_{\text {Par }} J$ is isomorphic to the category with

- objects: pairs (M, m) where M is a set and $m: M \rightarrow J$ is a total function
- morphisms $(M, m) \rightarrow(N, n)$: partial functions $f: M \rightarrow N$ such that $n(f(x))=m(x)$ for all $x \in M$ on which f is defined.

Proposition

$\operatorname{Comod}_{\mathrm{Par}} J \cong \prod_{j \in J} \mathrm{Par}$

cartesian monoidal category C with equalisers symmetric monoidal category \mathcal{V} with nice coreflexive equalisers

C \leadsto CoComon $_{V}$
$\mathrm{C} / J \leadsto$ Comod $_{V} J$
composition \leadsto corestriction

Corestriction

 of EDINBURGHThe corestriction of a J-comodule (X, x) along a comonoid morphism $r: J \rightarrow K$ is the K-comodule

cartesian monoidal category C with equalisers
 \leadsto symmetric monoidal category \mathcal{V} with nice coreflexive equalisers

C	\rightsquigarrow CoComon $_{\mathcal{V}}$
C/J	\rightsquigarrow Comod $_{\mathcal{V}} J$
composition	\rightsquigarrow
corestriction	
pullback	\rightsquigarrow
coinduction	

Coinduction

The coinduction of a K-comodule (Y, y) along a comonoid morphism $r: X \rightarrow Y$ is the J-comodule (X, x) given by the coreflexive equalisers

cartesian monoidal category C with equalisers
 \leadsto symmetric monoidal category \mathcal{V} with nice coreflexive equalisers

C	\rightsquigarrow CoComon $_{\mathcal{V}}$
C/J	\rightsquigarrow Comod $_{\mathcal{V}} J$
composition	\rightsquigarrow
corestriction	
pullback	\rightsquigarrow
coinduction	

of EDINBURGH

(1) Introduction to indexed category theory

(2) Comonoid indexing of nice symmetric monoidal categories

(3) Universality of self indexing and comonoid indexing

Proposition

There is an adjunction

(up to unique natural isomorphisms).

For an S-indexed category \mathbb{C} with the necessary properties, the adjunction has unit with \mathbb{C}-component $\mathbb{C} \rightarrow \operatorname{Self}\left(\mathbf{C}^{1}\right)$ given by the functor $F: \mathbf{S} \rightarrow \mathbf{C}^{1}$

and the functors $G^{J}: \mathbf{C}^{J} \rightarrow \mathbf{C}^{1} / F J$

Conjecture

There is an adjunction

(up to unique natural isomorphisms).

For an S-indexed symmetric monoidal category \mathbb{V} with the necessary properties, the adjunction has unit with \mathbb{V}-component $\mathbb{V} \rightarrow \mathbb{C o} \operatorname{Comon}\left(\mathcal{V}^{1}\right)$ given by the functor $F: \mathbf{S} \rightarrow \mathcal{V}^{1}$

$$
\begin{aligned}
& J \longrightarrow K \\
& \text { I I } \\
& \Sigma_{J} \Delta_{J} I \cong \Sigma_{K} \Sigma_{r} \Delta_{r} \Delta_{K} I \xrightarrow{\Sigma_{K \epsilon} t_{K} I} \Sigma_{K} \Delta_{K} I
\end{aligned}
$$

and the functors $G^{J}: \mathcal{V}^{J} \rightarrow \operatorname{Comod}_{\mathcal{V}^{\prime}}$ FJ

$$
\begin{aligned}
& M \longrightarrow N \\
& \text { I I } \\
& \left(\Sigma_{J} M, \Sigma_{J} \eta_{M}^{J}\right) \xrightarrow{\Sigma_{J} f}\left(\Sigma_{J} N, \Sigma_{J} \eta_{N}^{J}\right)
\end{aligned}
$$

- The comonoid indexing deserves to be better known
- The self indexing and comonoid indexing satisfy similar universal properties

Next steps

- Work out the details of the comonoid indexing universal property
- Find even more examples of suitable monoidal categories
- Links with linear dependent type theory or linear dependent lenses?

