Universal indexed categories

Matthew Di Meglio

THE UNIVERSITY of EDINBURGH

Categorical Late Lunch

1 Introduction to indexed category theory

2 Comonoid indexing of nice symmetric monoidal categories

3 Universality of self indexing and comonoid indexing

Motivation for generalised indexed families

1

• A ${\cal V}\text{-enriched category}~C$ has a set C_0 and a $(C_0\times C_0)\text{-indexed family of objects of }{\cal V}$

$$(\mathsf{C}(X,Y))_{(X,Y)\in\mathsf{C}_0\times\mathsf{C}_0}$$

- An E-internal category~C has an object \textbf{C}_0 of E and a morphism of E

$$\langle s, t
angle : \mathbf{C}_1
ightarrow \mathbf{C}_0 imes \mathbf{C}_0.$$

A V-enriched functor F: C → D consists of a function F₀: C₀ → D₀ and a (C₀ × C₀)-indexed family of morphisms of V

$$\left(\mathsf{C}(X,Y) \xrightarrow{F_{X,Y}} \mathsf{D}(F_0X,F_0Y) \right)_{(X,Y)\in\mathsf{C}_0\times\mathsf{C}_0}$$

• An E-internal functor $F : \mathbf{C} \to \mathbf{D}$ consists of a morphism $F_0 : \mathbf{C}_0 \to \mathbf{D}_0$ of E and a morphism of E

$$F_1 \colon \mathbf{C}_1 o (\mathbf{C}_0 imes \mathbf{C}_0) imes_{(\mathbf{D}_0 imes \mathbf{D}_0)} \mathbf{D}_1.$$

What does it mean to have a family of objects or morphisms indexed by something other than a set?

Let **S** be a category.

Definition

An S-indexed category \mathbb{C} is a pseudofunctor $\mathbb{C} \colon S^{\mathrm{op}} \to Cat$.

Write \mathbf{C}^{J} instead of $\mathbb{C}(J)$ and Δ_{r} instead of $\mathbb{C}(r)$.

Suppose that \mathbf{S} has a chosen terminal object 1.

Definition

The *underlying category* of an S-indexed category \mathbb{C} is the category \mathbb{C}^1 . We also call \mathbb{C} an *indexing* of \mathbb{C}^1 .

Write Δ_J instead of $\Delta_{!_J}$ where $!_J : J \to 1$.

Think of Δ_J as a diagonal functor and Δ_r as an indexed diagonal functor.

Definition

An indexed category has *indexed sums* if each Δ_r has a left adjoint Σ_r and these satisfy the left Beck-Chevalley condition.

Write Σ_J instead of $\Sigma_{!_J}$ where $!_J \colon J \to 1$.

Definition

An indexed category has *indexed products* if each Δ_r has a right adjoint Π_r and these satisfy the right Beck-Chevalley condition.

Write Π_J instead of $\Pi_{!_J}$ where $!_J : J \to 1$.

Set-indexing of a category C

Self indexing of a finitely complete category ${\bf C}$

Self indexing of a finitely complete category ${\boldsymbol{\mathsf{C}}}$

A right adjoint to
$$\Sigma_r$$
 is a choice, for each $(Y, y) \in \mathbb{C}/K$,
of $\Delta_r(Y, y) \in \mathbb{C}/J$ and $\epsilon_y^r \colon \Sigma_r \Delta_r(Y, y) \to (Y, y)$ such
that $(\Delta_r(Y, y), \epsilon_y^r)$ is terminal in $\Delta_r/(Y, y)$.

Let **C** be a finitely complete category. Equivalently, **C** is a cartesian monoidal category with equalisers.

The self indexing of ${\bm C}$ seems to be canonical, providing the foundation for

- categories internal to **C**
- \bullet dependent lenses/polynomials in ${\bf C}$
- multivariate polynomial functors in ${\boldsymbol{\mathsf{C}}}$
- $\bullet\,$ models of dependent type theories in ${\bf C}\,$

Is there still a canonical indexing of ${\bf C}$ if the monoidal product of ${\bf C}$ is not cartesian?

1 Introduction to indexed category theory

2 Comonoid indexing of nice symmetric monoidal categories

3 Universality of self indexing and comonoid indexing

symmetric monoidal category $\mathcal V$ with coreflexive equalisers preserved by all $X\otimes -\otimes Y$

Example

- A partial function $f: A \to B$ is a total function $\overline{f}: A \to B+1$.
- Let **Par** denote the category of sets and partial functions.

cartesian monoidal category C

with equalisers

• The cartesian product on **Set** gives a symmetric monoidal product on **Par**.

 \rightarrow

- The equaliser of f, g: A → B in Par is the equaliser of f
 , g
 : A → B + 1 in Set, but viewed as a partial function.
- Can check that equalisers in **Par** are preserved by all $X \otimes \otimes Y$

symmetric monoidal category $\mathcal V$ with nice coreflexive equalisers

cartesian monoidal category ${\bf C} \quad \underset{\mbox{with equalisers}}{\longrightarrow}$

$C \rightsquigarrow CoComon_{\mathcal{V}}$

A (cocommutative) comonoid J consists of

subject to the axioms

Comonoid morphisms

A *comonoid morphism* $r: J \to K$ consists of

subject to the axioms

Let C be a cartesian monoidal category.

Proposition	
$\mathbf{CoComon}_{\mathbf{C}}\cong\mathbf{C}$	

Partial proof.

For a comonoid (J, δ, ϵ) in **C**,

- $\epsilon: J \rightarrow 1$ is the unique such map,
- $\delta: J \to J \times J$ is of the form $\langle \delta_1, \delta_2 \rangle$, and the counitality laws imply that $\delta_1 = \delta_2 = id_J$.

Proposition

 $\textbf{CoComon}_{\textbf{Par}}\cong \textbf{Set}$

Partial proof.

For a comonoid (J, δ, ϵ) in **Par**,

- the counit law $(J \xrightarrow{\delta} J \otimes J \xrightarrow{\epsilon \otimes id_J} I \otimes J \cong J) = (J \xrightarrow{id_J} J)$ implies that δ is total and so $\delta = \langle \delta_1, \delta_2 \rangle$ in **Set**; it also implies that $\delta_2 = id_J$.
- the other counit law similarly implies that $\delta_1 = id_J$, and also that ϵ is total. Let $r: (J, \delta_J, \epsilon_J) \to (K, \delta_K, \epsilon_K)$ be a comonoid morphism in **Par**.
 - As ϵ_J is total, the counit preservation law $(J \xrightarrow{r} K \xrightarrow{\epsilon_K} I) = (J \xrightarrow{\epsilon_J} I)$ implies that $r: J \to K$ is also total.

- cartesian monoidal category ${\bf C}$ symmetric monoidal category ${\cal V}$ $\sim \rightarrow$ with equalisers with nice coreflexive equalisers
 - $\begin{array}{ccc} C & \leadsto & CoComon_{\mathcal{V}} \\ C/J & \leadsto & Comod_{\mathcal{V}}J \end{array}$

For a comonoid J, a J-comodule (X, x) consists of

subject to the axioms

A *J*-comodule morphism $f: (X, x) \to (X', x')$ consists of

subject to the axioms

Let ${\boldsymbol{\mathsf{C}}}$ be a cartesian monoidal category.

Proposition	
$\mathbf{Comod}_{\mathbf{C}}J\cong\mathbf{C}/J$	

Proposition

Comod_{Par}J is isomorphic to the category with

- objects: pairs (M, m) where M is a set and m: $M \rightarrow J$ is a total function
- morphisms $(M, m) \rightarrow (N, n)$: partial functions $f : M \rightarrow N$ such that n(f(x)) = m(x) for all $x \in M$ on which f is defined.

Proposition $\mathbf{Comod}_{\mathbf{Par}} J \cong \prod_{j \in J} \mathbf{Par}$

symmetric monoidal category $\ensuremath{\mathcal{V}}$ with nice coreflexive equalisers

- cartesian monoidal category ${\bf C} \quad \underset{\mbox{with equalisers}}{\sim}$
 - $\begin{array}{ccc} \mathbf{C} & \leadsto & \mathbf{CoComon}_{\mathcal{V}} \\ \mathbf{C}/J & \leadsto & \mathbf{Comod}_{\mathcal{V}}J \\ \text{composition} & \leadsto & \text{corestriction} \end{array}$

The *corestriction* of a *J*-comodule (X, x) along a comonoid morphism $r: J \to K$ is the *K*-comodule

 $\begin{array}{c} \mbox{cartesian monoidal category } \mathbf{C} \\ \mbox{with equalisers} \end{array} \xrightarrow{} & \mbox{symmetric monoidal category } \mathcal{V} \\ \mbox{with nice coreflexive equalisers} \end{array}$

 $C \rightsquigarrow CoComon_{\mathcal{V}}$

 $C/J \longrightarrow Comod_{\mathcal{V}}J$

composition \rightsquigarrow corestriction

pullback \rightsquigarrow coinduction

The *coinduction* of a *K*-comodule (Y, y) along a comonoid morphism $r: X \to Y$ is the *J*-comodule (X, x) given by the coreflexive equalisers

tegory C \longrightarrow symmetric monoidal category \mathcal{V} with nice coreflexive equalisers

cartesian monoidal category ${\bf C} \quad \underset{\mbox{with equalisers}}{\longrightarrow}$

 $\mathsf{C} \rightsquigarrow \mathsf{CoComon}_{\mathcal{V}}$

 $C/J \rightsquigarrow Comod_{\mathcal{V}}J$

composition \rightsquigarrow corestriction

pullback \rightsquigarrow coinduction

1 Introduction to indexed category theory

2 Comonoid indexing of nice symmetric monoidal categories

3 Universality of self indexing and comonoid indexing

Proposition

There is an adjunction

(up to unique natural isomorphisms).

Idea

For an **S**-indexed category \mathbb{C} with the necessary properties, the adjunction has unit with \mathbb{C} -component $\mathbb{C} \to \mathbb{S}$ elf(\mathbb{C}^1) given by the functor $F : \mathbb{S} \to \mathbb{C}^1$

and the functors $G^J \colon \mathbf{C}^J \to \mathbf{C}^1/FJ$

Conjecture

There is an adjunction

(up to unique natural isomorphisms).

ldea

For an **S**-indexed symmetric monoidal category \mathbb{V} with the necessary properties, the adjunction has unit with \mathbb{V} -component $\mathbb{V} \to \mathbb{C}o\mathbb{C}omon(\mathcal{V}^1)$ given by the functor $F \colon \mathbf{S} \to \mathcal{V}^1$

and the functors $G^J \colon \mathcal{V}^J \to \mathbf{Comod}_{\mathcal{V}^I} \mathcal{F}J$

- The comonoid indexing deserves to be better known
- The self indexing and comonoid indexing satisfy similar universal properties

Next steps

- Work out the details of the comonoid indexing universal property
- Find even more examples of suitable monoidal categories
- Links with linear dependent type theory or linear dependent lenses?