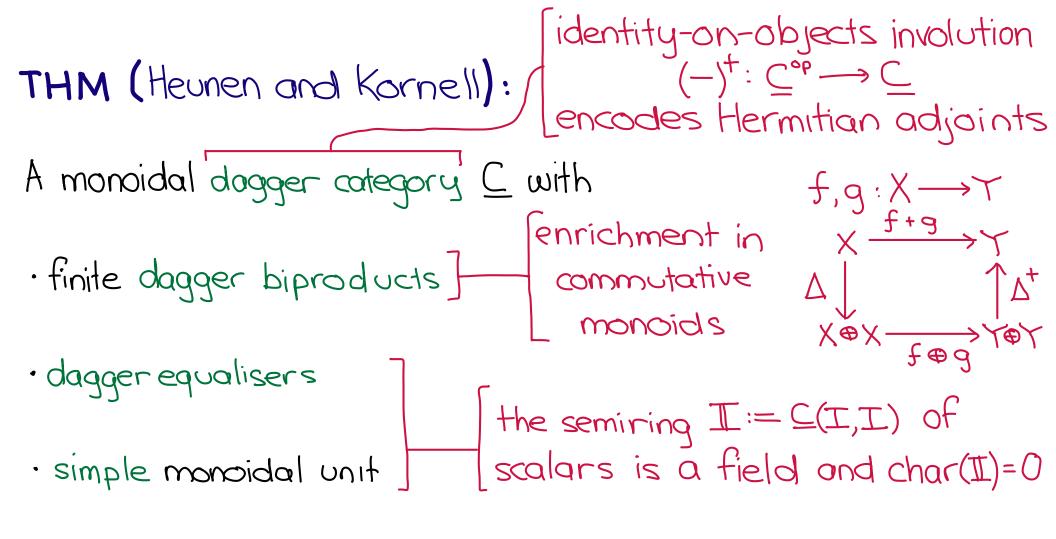
LIMITS OF SEQUENCES

MATTHEW DI MEGLIO (Joint work with Chris Heunen)

EDINBURGH CATEGORY THEORY SEMINAR, APRIL 2023



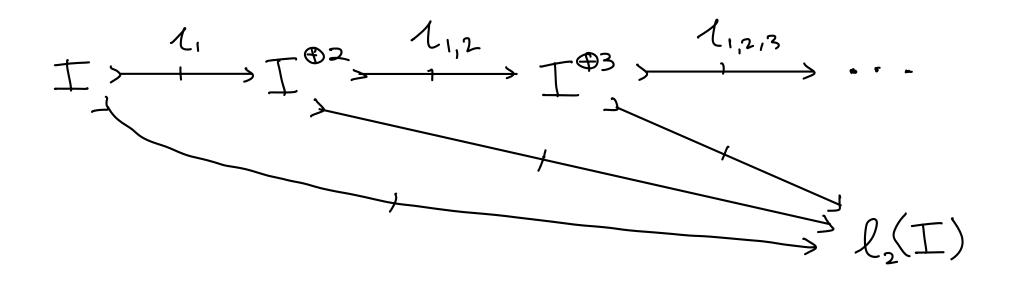
- directed colimits in wide subcategory of dagger manas [completeness of I]

 - •

is equivalent to Hilb

space over an involutive divisionring IK.

If X has an infinite orthonormal subset, then $K \cong R$, Cor H and X is a Hilbert space



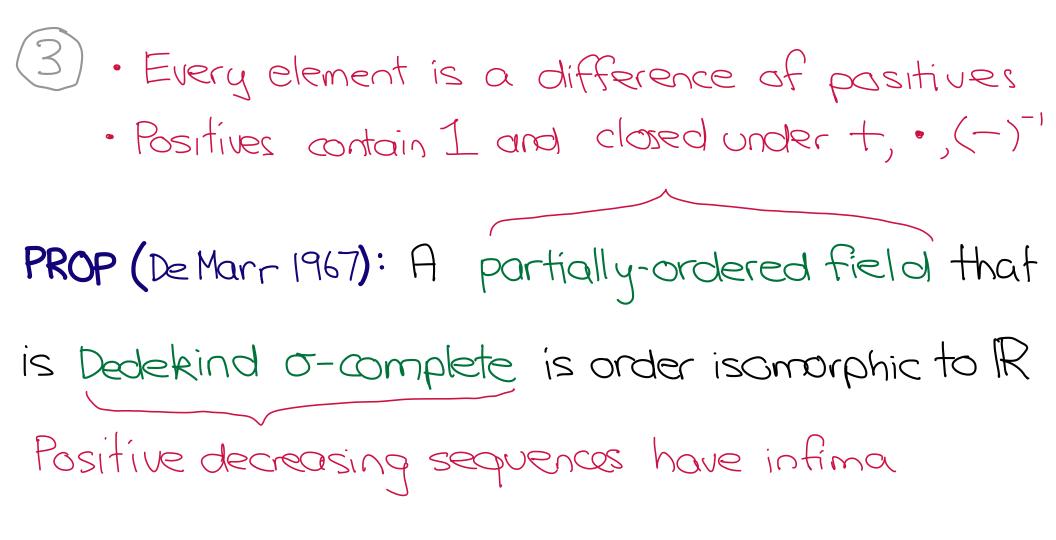
COAL:

Prove directly that I is IR or C

Link directed colimits in category theory and limits in analysis.

To axiomotise finite-dimensional Hilbert spaces,

cont use Solér's theorem.

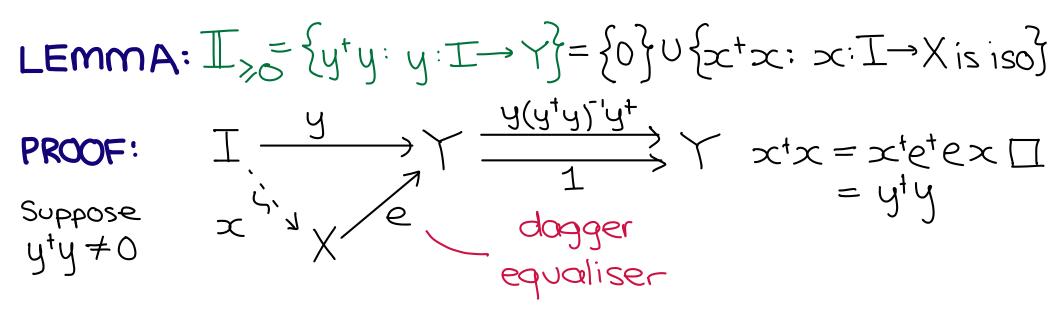


LEMMA: If $\mathbb{I}_{SA} = \{z \in \mathbb{I} : z = z^{\dagger}\}$ is \mathbb{R} , then \mathbb{I} is \mathbb{R} or \mathbb{C} . Then $i^2 + 1 = 0$ and **PROOF:** If $u \in \mathbb{I} \setminus \mathbb{I}_{SA}$, lef $i = \frac{u - u^{\dagger}}{\sqrt{-(u - u^{\dagger})^2}} \cdot \{1, i\}$ is bosis for \mathbb{I} over \mathbb{I}_{SA} . For all $a, b \in \subseteq(X, X)$, $a \leq b \Leftrightarrow b - a = f^{+}f$ for some $f: X \rightarrow Y$ LEMMA: ILSA is a partially-ordered field. $\alpha^2 = \alpha^{\dagger} \alpha$ PROOF: $\alpha = \frac{1}{4}(\alpha + 2)^{2} - \frac{1}{4}(\alpha^{2} + 4)$ $\alpha \in \mathbb{I}_{SA}$ $1 = 1^{+}1$ $x^{t}x + y^{t}y = \langle x, y \rangle^{t} \langle x, y \rangle$ $\chi : \underline{T} \to X$ $x^{\dagger}x \cdot y^{\dagger}y = (x \otimes y)^{\dagger}(x \otimes y)$ $Y: I \rightarrow Y$ $\frac{1}{x^{+}x} = \left(\frac{1}{x^{+}x}\right)^{2} x^{+}x$

COAL:

Prove that I is IR or C Prove that I is Dedekind o-complete

PROP (De Marr): Every partially-ordered field that is Dedekind O-complete is order isomorphic to IR. LEMMA: A dagger field with fixed field IR is IR or C. LEMMA: ILSA is a partially-ordered field.

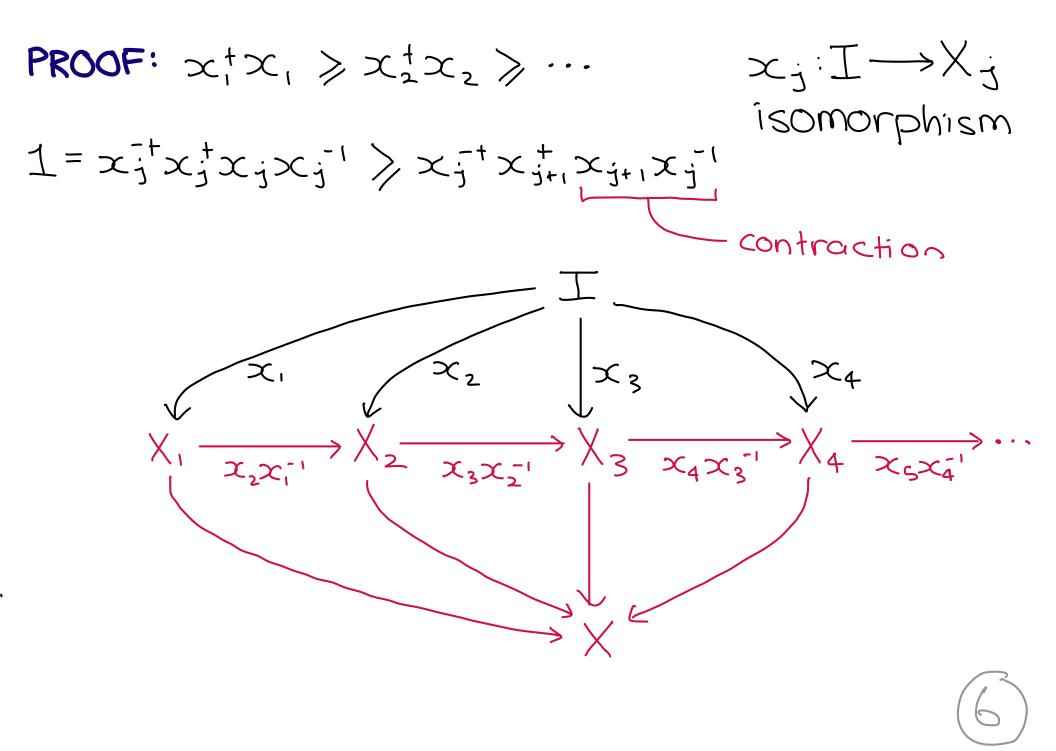


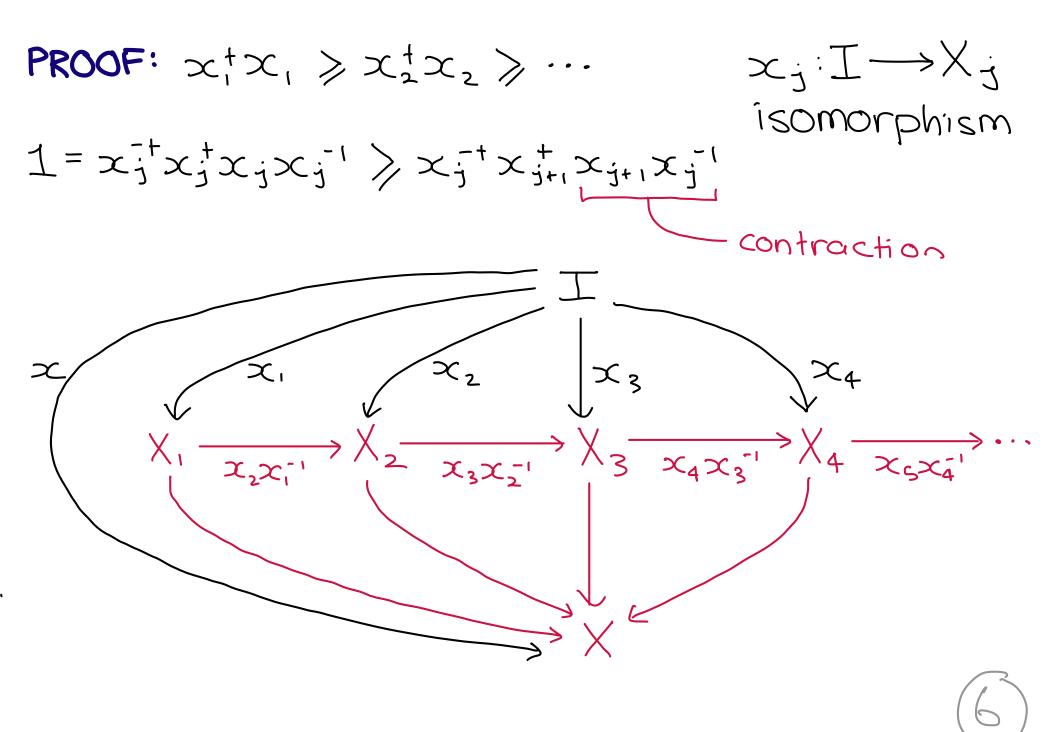
LEMMA: Is a is Dedekind or complete if $\mathbb{I}_{>0}$ is. IDEA: Addition preserves infind and $\mathbb{I}_{SA} = \mathbb{I}_{>0} - \mathbb{I}_{>0} \square$

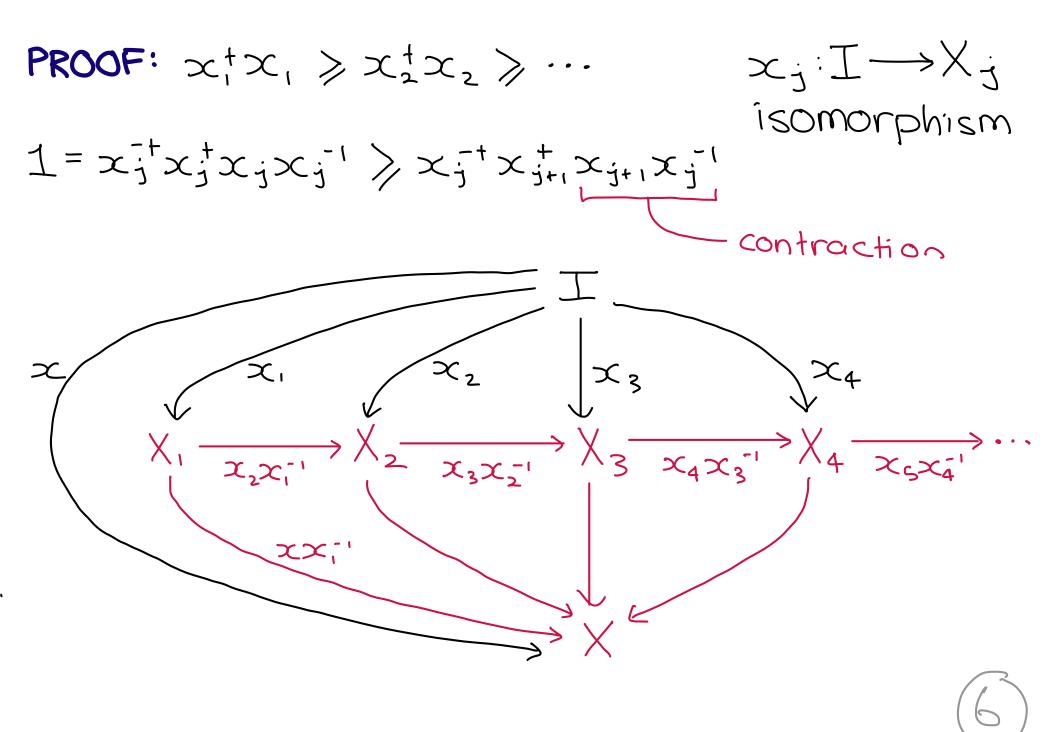
PROP: $\mathbb{I}_{\geq 0}$ is Dedehind O-complete if the wide subcategory of contractions has directed columnts $f: X \rightarrow Y$ such that $f^{\dagger}f + \overline{f}^{\dagger}\overline{f} = 1_X$ for some $\overline{f}: X \rightarrow \overline{Y}$

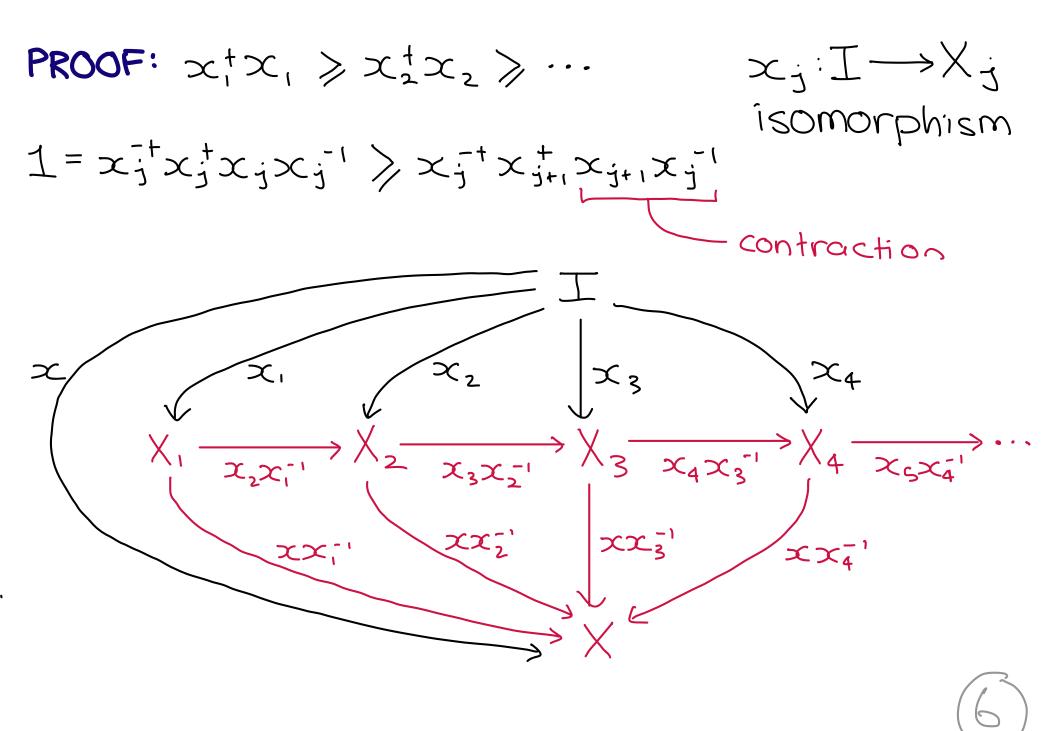


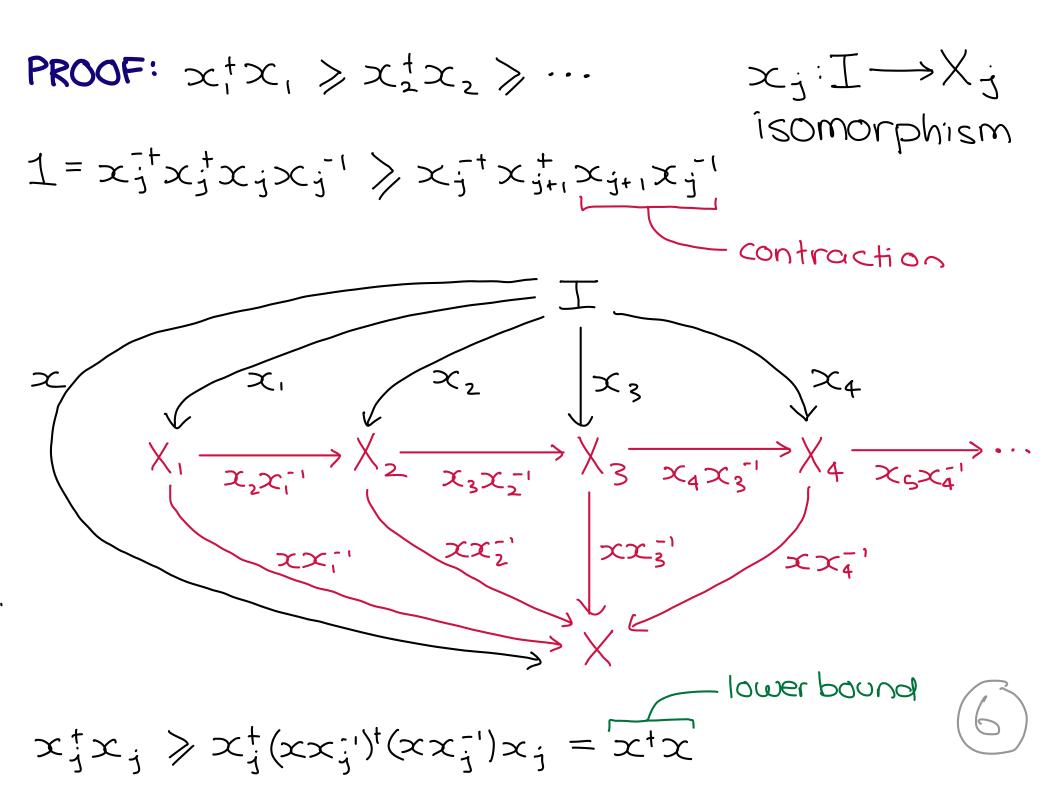
 $(|f x_k^{\dagger} x_k = 0 \text{ for some } k, \text{ then } \inf_k x_k^{\dagger} x_k = 0)$

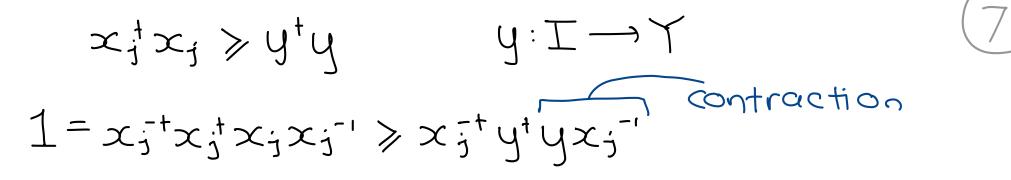


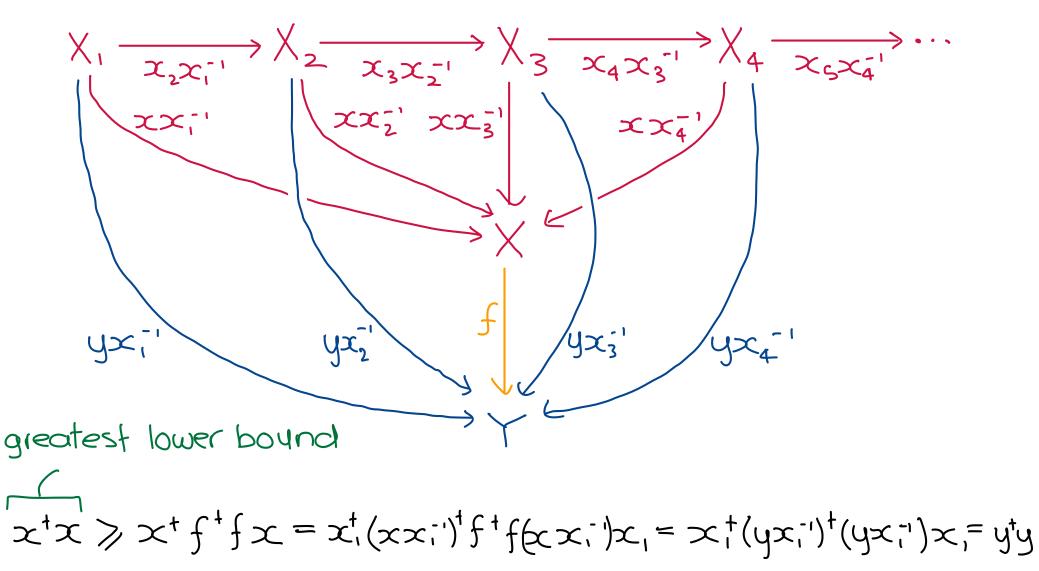












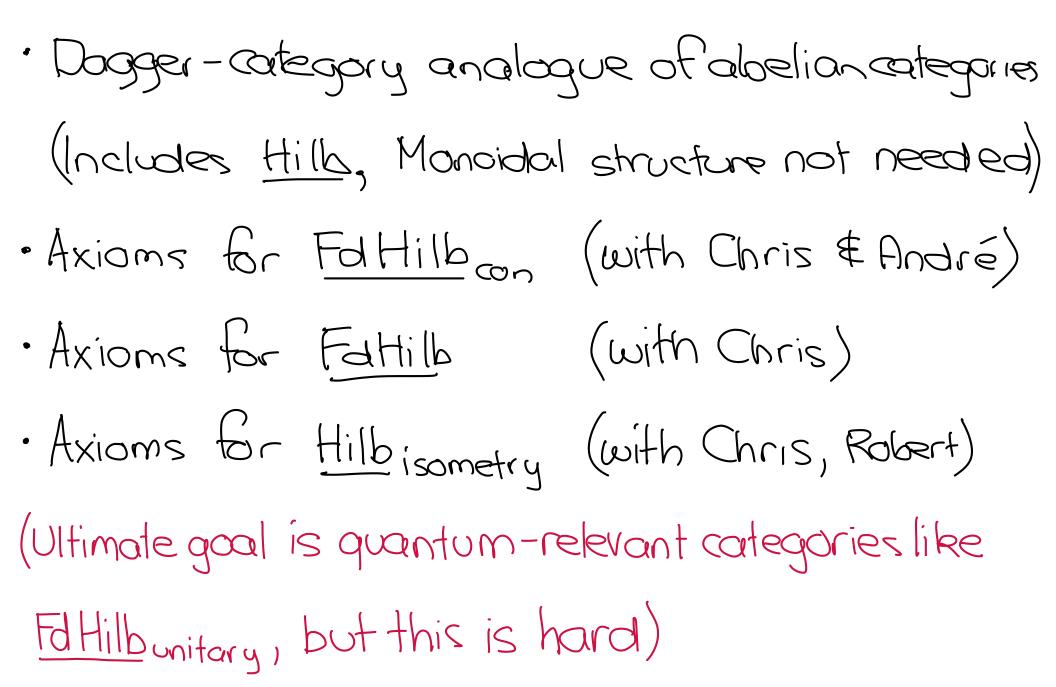
THM: If wide subcategory of contractions

has directed colimits, then I is R or C.

OPEN QUESTIONS:

() Can we construct directed colimits of contractions from those of dagger monos? 2) If we drop symmetric monoridal structure and let I be a simple projective separator, can we deduce that I is R, C or H?

WORK IN PROGRESS:



(9)