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Hilbert spaces are vector spaces with geometry

(encoded by a complefe innerproduct)
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Contractions are linear maps between
Hilbert spaces that decrease lengths
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Isometries are maps between
Hilbert spaces that preserve geomefry
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Sz.Nagy's unitary dilation theorem
expresses contractions in terms of
isometries and unitaries

1+ 1s the foundation of
the modern ’rheorg of contractions



Every confraction f:X—X has a
minimal unifary dilation u:S—3




Every confraction f:X—X has a
minimal unifary dilation u:S—3
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Call (5,s..5.) a codilator of £



Codilators make sense in the
abstract seH‘ing of *-ca’regories

=1 @ffefg (=
A morphism :X=>Y is isometric if ff=1

Every morphism in Hilb; has a codilator
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Finite probabilify spaces and stochastic maps form a -category FinPS
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Every morphism in FinPS has a dilator
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Every morphism in FinPS has a dilator

bloom-shriek factorisation

“The information loss
of a stochastic map”
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contraction hos a codilator.
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A morphism §:X—Y in C

is a strict contraction if
1-£%F =99

for some isomorphism g:X*Z.

In C, every strict
contraction hos a codilator.
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- Dilators are a new universal construction in - categories

.They generalise minimal unitary dilations of confractians
and the bloom-shriek factorisation of stochastic maps

-EverLé strict contraction in a nice *-ccﬁegorg has a dilator

https:/mdimeglic.github.io
m-d{megho@ed.qc.ulg
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Hilb,
@) exists o Semicor’resion monofdol product (8,0)
(2) X=X00—2xaY and Y= 00Y-LLyay are Jointly epic

3)If x and y are epic, then 3*x = y*y 1fF y=fx for some iso

(A) exists a zero object

(8) every morphism has a dilator

(© If x*x=yy then y=fx for some f



-Dilators in ordinary categories ?
. Connection fo factorisation systems ?

-More examples?

https:/mdimeglio.github.io
m-dimeglio@ed.ac.uk






