MINIMAL DILATIONS CATEGORICALLY

MATTHEW DIMECLIO

ITACA FEST SEPTEMBER 2024 Hilbert spaces are vector spaces with geometry (encoded by a complete innerproduct)

 $\cos\theta = \frac{\operatorname{Re}\langle x|y\rangle}{\|x\|\|y\|}$ Angles

 $\|\mathbf{x}\| = \sqrt{\langle \mathbf{x} | \mathbf{x} \rangle}$ Lengths Contractions are linear maps between Hilbert spaces that decrease lengths

 $\|f_{\infty}\| \leq \|\infty\|$

They form a category <u>Hilb</u> <1

Isometries are maps between Hilbert spaces that preserve geometry

They form a full subcategory $Hilb_1$ of $Hilb_{\leq 1}$

Sz. Nagy's unitary dilation theorem expresses contractions in terms of isometries and unitaries

It is the foundation of the modern theory of contractions

Every contraction $f:X \rightarrow X$ has a minimal unitary dilation $u:S \rightarrow S$

Call (S, S_1, S_2) a codilator of f

Codilators make sense in the abstract setting of *-categories

$$1^* = 1$$
 $(gf)^* = f^*g^*$ $(f^*)^* = f$

A morphism $f: X \rightarrow Y$ is isometric if $f^*f = 1$

Every morphism in $\underline{\text{Hilb}}_{\leq 1}$ has a codilator

8

8

They form a *-category $\frac{\text{Rel}_{\leq 1}}{1}$

8

They form a *-category $\frac{\text{Rel}_{\leq 1}}{1}$

8

They form a *-category $\frac{\text{Rel}_{\leq 1}}{\text{Every morphism in } \frac{\text{Rel}_{\leq 1}}{\text{Rel}_{\leq 1}}$ has a codilator

8

They form a *-category $\frac{\text{Rel}_{\leq 1}}{\text{Every morphism in } \frac{\text{Rel}_{\leq 1}}{\text{Rel}_{\leq 1}}$ has a codilator

8

They form a *-category $\frac{\text{Rel}_{\leq 1}}{\text{Every morphism in } \frac{\text{Rel}_{\leq 1}}{\text{Rel}_{\leq 1}}$ has a codilator

Finite probability spaces and stochastic maps form a *-category FinPS (with full support)

Finite probability spaces and stochastic maps form a *-category FinPS (with full support)

Finite probability spaces and stochastic maps form a *-category <u>FinPS</u> (with full support)

9

Finite probability spaces and stochastic maps form a *-category FinPS (with full support)

Every morphism in FinPS has a dilator

Every morphism in FinPS has a dilator

9

Every morphism in FinPS has a dilator

Let \subseteq be a *-category with • an enrichment in <u>Ab</u>, • finite orthoisometric biproducts, $i_1^* = p_1$ $i_2^* = p_2$ • isometric kernels. Let \subseteq be a *-category with • an enrichment in Ab, • finite orthoisometric biproducts, $i_1^* = p_1$ $i_2^* = p_2$ • isometric kernels.

A morphism $f: X \rightarrow Y$ in <u>C</u> is a strict contraction if

 $1 - f^*f = g^*g$ for some isomorphism $g:X \rightarrow Z$. Let C be a \ast -category with • an enrichment in <u>Ab</u>, • finite orthoisometric biproducts, $i_1^* = p_1$ $i_2^* = p_2$ • isometric kernels.

A morphism $f: X \rightarrow Y$ in <u>C</u> is a strict contraction if

 $1 - f^*f = g^*g$ for some isomorphism $g:X \rightarrow Z$.

Let \subseteq be a *-category with \cdot an enrichment in <u>Ab</u>, · finite orthoisometric biproducts, $i_{1}^{*} = p_{1}$ $i_{2}^{*} = p_{2}$ · isometric kernels. A morphism $f: X \rightarrow Y$ in <u>C</u> is a strict contraction if $1 - f^*f = g^*q$

for some isomorphism g: X→Z.

Proposition: In \subseteq , every strict contraction has a codilator.

Y⊕Z

 \mathbf{I}

[f _9 Let \subseteq be a *-category with · an enrichment in Ab, · finite orthoisometric biproducts, $i_{1}^{*} = p_{1}$ $i_{2}^{*} = p_{2}$ isometric kernels.

A morphism $f: X \rightarrow Y$ in <u>C</u> is a strict contraction if

 $1 - f^*f = g^*g$ for some isomorphism $g:X \rightarrow Z$.

Let \subseteq be a *-category with · an enrichment in Ab, · finite orthoisometric biproducts, $i_{1}^{*} = p_{1}$ $i_{2}^{*} = p_{2}$ · isometric kernels. A morphism $f: X \rightarrow Y$ in <u>C</u> is a strict contraction if

 $1 - f^*f = g^*g$ for some isomorphism $g:X \rightarrow Z$.

Let \subseteq be a *-category with • an enrichment in <u>Ab</u>, · finite orthoisometric biproducts, $i_{1}^{*} = p_{1}$ $i_{2}^{*} = p_{2}$ · isometric kernels.

A morphism $f: X \rightarrow Y$ in <u>C</u> is a strict contraction if

 $1 - f^*f = g^*g$ for some isomorphism $g:X \rightarrow Z$.

Let \subseteq be a *-category with • an enrichment in <u>Ab</u>, · finite orthoisometric biproducts, $i_{1}^{*} = p_{1}$ $i_{2}^{*} = p_{2}$ · isometric kernels.

A morphism $f: X \rightarrow Y$ in <u>C</u> is a strict contraction if

 $1 - f^*f = g^*g$ for some isomorphism $g:X \rightarrow Z$.

Let G be a \ast -category with • an enrichment in Ab, • finite orthoisometric biproducts, $i_1^* = p_1$ $i_2^* = p_2$ • isometric kernels.

A morphism $f: X \rightarrow Y$ in <u>C</u> is a strict contraction if

 $1 - f^*f = g^*g$ for some isomorphism $g:X \rightarrow Z$.

Let \subseteq be a \ast -category with • an enrichment in Ab, • finite orthoisometric biproducts, $i_1^* = p_1$ $i_2^* = p_2$ • isometric kernels.

A morphism $f: X \rightarrow Y$ in <u>C</u> is a strict contraction if

 $1 - f^*f = g^*g$ for some isomorphism $g:X \rightarrow Z$.

Let \subseteq be a *-category with • an enrichment in <u>Ab</u>, • finite orthoisometric biproducts, $i_1^* = p_1$ $i_2^* = p_2$ • isometric kernels.

A morphism $f: X \rightarrow Y$ in <u>C</u> is a strict contraction if

 $1 - f^*f = g^*g$ for some isomorphism $g:X \rightarrow Z$.

Let \subseteq be a \ast -category with • an enrichment in Ab, • finite orthoisometric biproducts, $i_1^* = p_1$ $i_2^* = p_2$ • isometric kernels.

A morphism $f: X \rightarrow Y$ in <u>C</u> is a strict contraction if

A morphism $f:X \rightarrow Y$ in <u>C</u> is a strict contraction if $1 - f^*f = g^*q$

for some isomorphism g: X→Z.

Proposition: In <u>C</u>, every strict contraction has a codilator.

 $1 - f^*f = g^*g$ for some isomorphism $g: X \rightarrow Z$.

$$t^{*}t = \begin{bmatrix} 1 & f^{*} \\ f & 1 \end{bmatrix} = s^{*}s$$
$$\begin{bmatrix} 1 & f^{*} \\ f & 1 \end{bmatrix}^{-1} \begin{bmatrix} (g^{*}g)^{-1} & -(g^{*}g)^{-1}f^{*} \\ -f(g^{*}g)^{-1} & 1 + f(g^{*}g)^{-1}f^{*} \end{bmatrix}$$

$$1 - f^*f = g^*g$$

for some isomorphism $g:X \rightarrow Z$

$$t^{*}t = \begin{bmatrix} 1 & f^{*} \\ f & 1 \end{bmatrix} = s^{*}s$$
$$\begin{bmatrix} 1 & f^{*} \\ f & 1 \end{bmatrix}^{-1} \begin{bmatrix} (g^{*}g)^{-1} & -(g^{*}g)^{-1}f^{*} \\ -f(g^{*}g)^{-1} & 1 + f(g^{*}g)^{-1}f^{*} \end{bmatrix}$$

 $1 - f^*f = g^*g$ for some isomorphism $g:X \rightarrow Z$.

$$t^{*}t = \begin{bmatrix} 1 & f^{*} \\ f & 1 \end{bmatrix} = s^{*}s$$
$$\begin{bmatrix} 1 & f^{*} \\ f & 1 \end{bmatrix}^{-1} \begin{bmatrix} (g^{*}g)^{-1} & -(g^{*}g)^{-1}f^{*} \\ -f(g^{*}g)^{-1} & 1 + f(g^{*}g)^{-1}f^{*} \end{bmatrix}$$

$$1 - f^*f = g^*g$$

for some isomorphism $g:X \rightarrow Z$

SUMMARY

· Dilators are a new universal construction in *-categories

They generalise minimal unitary dilations of contractions and the bloom-shriek factorisation of stochastic maps

· Every strict contraction in a nice *-category has a dilator

https://mdimeglio.github.io m.dimeglio@ed.ac.uk

A DILATION OF "MINIMAL DILATIONS CATEGORICALLY"

MATTHEW DIMEGLIO

EDINBURGH CATEGORY THEORY SEMINAR SEPTEMBER 2024

Let <u>C</u> be a *-category in which (1) q zero object exists (2) dilators exist (3) isometric equalisers exist (4) regular monos are normal **EXAMPLES:** <u>Hilb</u> ≤ 1 , <u>Rel</u> ≤ 1

Let <u>C</u> be a *-category in which (1) q zero object exists (2) dilators exist (3) isometric equalisers exist (4) regular monos are normal **EXAMPLES:** <u>Hilb</u> ≤ 1 , <u>Rel</u> ≤ 1

Proposition: All cospans have a (jointly epic, isometric) factorisation

Let <u>C</u> be a *-category in which (1) q zero object exists (2) dilators exist (3) isometric equalisers exist (4) regular monos are normal **EXAMPLES:** <u>Hilb</u> ≤ 1 , <u>Rel</u> ≤ 1

PROPOSITION: All cospans have a (jointly epic, isometric) factorisation

Proposition: Dilators are jointly epic Let <u>C</u> be a *-category in which LEMMA: $i_1m_1 = i_2m_2$ (1) g zero object exists (2) dilators exist (3) isometric equalisers exist (4) regular monos are normal $X_1 \oplus X_2$ **EXAMPLES:** <u>Hilb</u> $_{\leq 1}$, <u>Rel</u> $_{\leq 1}$

PROPOSITION: All cospans have a (jointly epic, isometric) factorisation

Proposition: Dilators are jointly epic

11

Let <u>C</u> be a *-category in which <u>LEMMA</u>: $i_1m_1 = i_2m_2$ (1) g zero object exists (2) dilators exist (3) isometric equalisers exist (4) regular monos are normal **EXAMPLES:** <u>Hilb</u> $_{\leq 1}$, <u>Rel</u> $_{\leq 1}$

PROPOSITION: All cospans have a (jointly epic, isometric) factorisation

Proposition: Dilators are jointly epic

11

Let <u>C</u> be a *-category in which Proposition: (1) q zero object exists (2) dilators exist $t^*s = f$ (3) isometric equalisers exist XQA (4) regular monos are normal **EXAMPLES:** <u>Hilb</u> $_{\leq 1}$, <u>Rel</u> $_{\leq 1}$ X⇔t **PROPOSITION:** All cospans have a (jointly epic, isometric) factorisation Y⊕_tA **PROPOSITION:** Dilators are jointly epic 1ງ Let <u>C</u> be a *-category in which **Proposition:** (1) g zero object exists (2) dilators exist (3) isometric equalisers exist X⇔₅A (4) regular monos are normal **EXAMPLES:** <u>Hilb</u> $_{\leq 1}$, <u>Rel</u> $_{\leq 1}$ $(X \oplus_{s} A) \oplus_{A} (Y \oplus_{t} A)$ X⇔t **PROPOSITION:** All cospans have a (jointly epic, isometric) factorisation YҾ₄A **PROPOSITION:**

Dilators are jointly epic

 $t^*s = f$

12

Let <u>C</u> be a *-category in which **Proposition:** (1) g zero object exists (2) dilators exist (3) isometric equalisers exist XA (4) regular monos are normal **EXAMPLES:** <u>Hilb</u> $_{\leq 1}$, <u>Rel</u> $_{\leq 1}$ $(X \oplus_{s} A) \oplus_{A} (Y \oplus_{t} A) \longleftrightarrow A$ X⇔t **PROPOSITION:** All cospans have a (jointly epic, isometric) factorisation YҾ₄A **PROPOSITION:**

Dilators are jointly epic

12

 $t^*s = f$

Let <u>C</u> be a *-category in which **Proposition:** (1) g zero object exists (2) dilators exist (3) isometric equalisers exist (4) regular monos are normal **EXAMPLES:** <u>Hilb</u> $_{\leq 1}$, <u>Rel</u> $_{\leq 1}$

Proposition: All cospans have a (jointly epic, isometric) factorisation

Proposition: Dilators are jointly epic

Let <u>C</u> be a *-category in which **Proposition:** (1) a zero object exists (2) dilators exist (3) isometric equalisers exist (4) regular monos are normal **EXAMPLES:** <u>Hilb</u> $_{\leq 1}$, <u>Rel</u> $_{\leq 1}$

PROPOSITION: All cospans have a (jointly epic, isometric) factorisation

Proposition: Dilators are jointly epic

Let <u>C</u> be a *-category in which **Proposition:** (1) a zero object exists (2) dilators exist (3) isometric equalisers exist (4) regular monos are normal **EXAMPLES:** <u>Hilb</u> $_{\leq 1}$, <u>Rel</u> $_{\leq 1}$

PROPOSITION: All cospans have a (jointly epic, isometric) factorisation

Proposition: Dilators are jointly epic

13

Let <u>C</u> be a *-category in which **Proposition:** (1) a zero object exists (2) dilators exist (3) isometric equalisers exist (4) regular monos are normal **EXAMPLES:** <u>Hilb</u> ≤ 1 , <u>Rel</u> ≤ 1

Proposition: All cospans have a (jointly epic, isometric) factorisation

Proposition: Dilators are jointly epic

Some AXIOMS FOR $\underline{\text{Hilb}}_{\leq 1}$: 14 (1) exists a semicartesian monoidal product (\oplus , 0) (2) $X \cong X \oplus 0 \xrightarrow{1 \oplus 0} X \oplus Y$ and $Y \cong 0 \oplus Y \xrightarrow{0 \oplus 1} X \oplus Y$ are jointly epic (3) If x and y are epic, then $x^*x = y^*y$ iff y = fx for some iso f Some Axioms for $\underline{\text{Hilb}}_{\leq 1}$: 14 (1) exists a semicartesian monoidal product (\oplus , 0) (2) $X \cong X \oplus 0 \xrightarrow{1 \oplus 0} X \oplus Y$ and $Y \cong 0 \oplus Y \xrightarrow{0 \oplus 1} X \oplus Y$ are jointly epic (3) If x and y are epic, then $x^*x = y^*y$ iff y = fx for some iso f

REPLACEMENT AXIOMS:

(A) exists a zero object (B) every morphism has a dilator

(c) If $x^*x = y^*y$ then y = fx for some f

Discussion Points

· Dilators in ordinary categories ?

Connection to factorisation systems?

•More examples?

https://mdimeglio.github.io m.dimeglio@ed.ac.uk