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Contractions are linear maps between 2

Hilbert spaces that decrease lengths
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Isometries are maps between 3

Hilbert spaces that preserve geometry
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52
. Nagy's unitary dilation theorem

expresses contractions in terms of

isometries and unitaries

It is the foundation of

the modern theory of contractions
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Codilators make sense in the

abstract setting of X-categories
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Every morphism in Hilb has a codilator
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Every morphism in iPS has a dilator
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Every morphism in iPS has a dilator
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SUMMARY
· Dilators are a new universal construction in -categories

· They generalise minimal unitary dilations of contractions
and the bloom-shriek factorisation ofstochastic maps

· Every strict contraction in a nice -category has a dilator

https : mdimeglio . github .
io

m . dimeglioged . ac . uk
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REPLACEMENT AXIOMS :

(A) exists a zero object
(B) every morphism has a dilator

(d) Ifcc' yy then y fo for some f



DISCUSSION POINTS

· Dilators in ordinary categories ?

· Connection to factorisation systems ?

·More examples ?

https : mdimeglio . github .
io

m . dimeglioged . ac . uk




