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@ The category Lens

® Lens is regular-ish
® Monos, epis and images in Lens

@ All epis in Lens are proxy effective



What is a lens? " S

A lens F: A — B consists of
e a get functor F: A — B, and
e a put function FA: B(FA,e) — A(A, e) foreach Ac |A|,

such that
A AP e pfldmzid o 4 L Il
l e
B FA b, @M% .. AL  PRA_Y .,

(PutGet) (Putld) (PutPut)
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The category of lenses " fh

e The composite Go F of lenses F: A — B and G: B — C is given by

(Go F)A = GFA
(Go F)a— GFa
(Go F)Ac = FAG™¢

* Lens is the category of small categories and lenses

e U: Lens — Cat is the functor that sends each lens to its get functor



@ The category Lens

® Lens is regular-ish
® Monos, epis and images in Lens

@ All epis in Lens are proxy effective



Regular categories

A category is regular if
¢ it has all finite limits,
e it has image factorisations

ofeach f: X — Y, and

* image factorisations are
pullback stable.
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Equivalently, a category is regular if
e it has all finite limits,
e the kernel pairofeach 7: X — Y

kerf —2 4 X

P1l_, lf
X—f>Y

has a coequaliser, and
e regular epis are pullback stable.
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Properties of regular categories " Uiheity

For a morphism e in a category C

e effective epi e regular epi e strong epi

e has a kernel pair C is regular C has pullbacks
of monos

In a regular category
® reqgular epis and monos form an orthogonal factorisation system
o effective epis, reqular epis, strong epis and extremal epis coincide

e extremal epi



. . ¥ MACQUARIE
Internal equivalence relations " University

e kernel pairs are internal equivalence relations
Q2

ker f x x ker f ker f
X ker f P J&t P2 4
;\pz \’prl kerj —— 5 X
kerf — X kerf — X
- - el P f P
pi J/f P2 pi f
X ——Y X —Y XK— Y
+ /01 f\ 4
ker f s X
P2

¢ a kernel pair's coequaliser is like the object of its equivalence classes
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Limits in Lens " fh

e equalisers
¢ aterminal object (the terminal object 1 of Cat)
¢ not all products (e.g. not 2 x 2)

e canonical proxy pullbacks
(these have some similar properties to pullbacks)

e canonical proxy products
(the proxy pullback of the unique cospan over the terminal object)

e canonical proxy kernel pairs
(the proxy pullback of a morphism along itself)
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Proxy pullbacks in Lens " fh

In Lens, a span A <& D 5 Biis a proxy pullback of A 5 ¢ £ B if
DB
° @l lG is a commuting square in Lens,
A—C
D Y B
o Uél - lUG is a pullback square in Cat, and
A—C
UF
e forall D € |D|, allac A(GD,e) and all b € B(FD, ),

FGPa=G°Fa and GFPb= FG°Gp.
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Proxy pullback properties " Uiheity

FGPa= GFPFa GFPb = FGPGb
2 _ 2
GFPF; b
’\R @ ’\“
— UF — UF
D — B D— B
Uél - lUG FGDPGb Uél - lUG
A C A C

Each pullback of the get functors of a lens cospan lifts uniquely to a proxy
pullback of the cospan
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Proxy pullbacks are pullback-ish " Uiheity

Proposition

Proxy pullbacks are unique up to unique isomorphism

Proposition (proxy pullback stability)
The following classes of morphisms in Lens are proxy pullback stable:

e identity morphisms e discrete opfibrations
® jsomorphisms e split opfibrations
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Proxy pullbacks are pullback-ish " Uiheity

Proposition (proxy pullback pasting)

D-.B > B’
él Gl PPB l
A F>C > C

left square is PPB — outer rectangle is PPB
outer rectangle is PPB
left square is PPB <— +
GF°b=F®Gb VD ec |D|,bc B(FD,e)
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Proxy pullbacks are pullback-ish " Uiheity

Proposition (constrained naturality)

. Dl IE/ s B/
HltD,”/////’% FTAAa/ _ TCFAF/aI
D B la’ PPB @ GTuBH — TEGb
_ p F / _ _
G‘ PPe G‘ N FTold = Tef°F o’
A

o
T — = =
D K GTo’d — TAPG d
f} C
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Proxy pullbacks are pullback-ish " Uiheity

e All proxy kernel pairs have symmetry and transitivity lenses

K A JK—2= A
/ ,/7:"// ! P2
K—>A l BF KxaK — K l PPB BF
P @ P
k k%p‘/—> B 011 P:B P“/A/;> B
1
A ZB K 4,0‘ F

* The proxy kernel pair of a lens F has a reflexivity lens if and only if F is
a discrete opfibration; in this case, it is a real kernel pair
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Lens is regular-ish " fh

e proxy effective, regular, strong and extremal epis coincide
(all epis are proxy effective)

e (regular) epis and monos form an orthogonal factorisation system
¢ image factorisations are proxy pullback stable
® (regular) epis are proxy pullback stable

e the corestriction of a lens coequalises the lens’ proxy kernel pair



@ The category Lens

® Lens is regular-ish
@® Monos, epis and images in Lens

@ All epis in Lens are proxy effective
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Monos in Lens " University

U preserves and reflects monos

Reflection was proved by Chollet et al.

Proof of preservation.

Let M: A — B be a monic lens and P;, P its proxy kernel pair
e P, =P,as Mismonicand Mo Py = Mo P,
e UM is monic as UP,, UP: is its kernel pair and UP; = UP; O
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Monic lenses are cosieves " University

A functor F: A — B such that

A AT If F: A — B is amonic lens, UF is
Fl * monic by preservation,
B FA 2., e injective on objects and
morphisms as it is monic,
is called a discrete opfibration. * a discrete opfibration as F is an
A cosieve is an injective-on-objects _ injective-on-morphisms lens.
discrete opfibration. If F: A — B is a cosieve, then

e there is a unique lens F: A — B
such that UF = F, and

e f is monic by reflection. ]

Proposition

U induces a bijective correspondence
between monic lenses and cosieves
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Other properties of monic lenses " University

Proxy pullbacks along
monos are pullbacks

Corollary

Monic lenses are proxy
pullback stable

Alens F: A — B is monic if and only if
ida, ida s @ proxy kernel pair of F

Proposition

A lens with proxy kernel pair P, P, is
monic if and only if Py = Ps; if so, P is iso
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Image factorisations in Lens " fh

e Cosieves are out-degree-zero subcategory inclusions

e The image of alens F: A — B is the out-degree-zero subcategory
Im F of B formed by the images of the object and morphism maps of F

e Every lens F: A — B has a factorisation
F

A— ImF — B
E M

where M is monic and E is surjective on objects and morphisms
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Epis in Lens are nicer than epis in Cat " fh

epic = surjective on objects
. o , In Lens
epic =~ surjective on morphisms
surjective on objects
epic <— +
surjective on morphisms

epic < surjective on objects
<= surjective on morphisms



Cokernels of get functors lift uniquely " Uittty &

Let F: A — B be a lens, and J1, J>: B — C the cokernel pair of UF. Then
there are unique lenses J; and J» above J1 and J,, and J; o F = J> o F.

Proof.

}'L ’i{// Jy, Jo is also the cokernel pair of UM
B Ji and J, are cosieves as UM is a cosieve and

\ / cosieves are pushout stable
J2 discrete opfibrations are uniquely lenses ]

A ur ® Let F = Mo E be the image factorisation of F
lux Jio UM = Jo0 UM as J; o UF = J»o UF and UE is epic
m
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U preserves epis " University

U preserves and reflects epis

Reflection was proved by Chollet et al.

Proof of preservation.
Let E: A — B be an epic lens and J;, J> the unique lenses above the
cokernel pair of UE

e Jij=dasEisepicand Jjo E=dr o E

e UE is epic as UJ;, UJs is its cokernel pair and UJ; = Uds O

20
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Epic lenses are proxy pullback stable " Uiheity

Proposition

Epic lenses are proxy pullback stable

Suppose that E is epic. For each A € |A|
D ——B o there is a B ¢ |B| with EB = FA
as E is surjective on objects, and
l l e there is a unique D € |D| with ED = Aand FD = B
A C as the square of get functors is a pullback in Cat.

So E is surjective on objects, and thus epic. O

—

21



@ The category Lens

® Lens is regular-ish
® Monos, epis and images in Lens

@ All epis in Lens are proxy effective
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Coequalisers in Lens " fh

® e coequalises f; and f, if it is their universal cofork

f
A—— B —° ¢

fg :
1 3th
vg +

D
e Cat has all coequalisers, but they aren’t usually nice to describe
¢ Lens doesn’t have all coequalisers, nor does U preserve/reflect them

¢ Lens does have some coequalisers, some of which are reflected by U

22
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Coequaliser non-existence and non-preservation " it

fi

A Y« x_" vy, Y, X Y, A
Y « — NV
. l f f le
f 7 i 7
B Y X' Y; Y/ X' Y, B

e G; and G, are the
Yi+—— X X ——Y, B only lenses above
Y, «— — Y] the coequaliser of
1 laz UF; and UF>
e NolensH: D — D
D with G1 =Ho Gg

Gy

O

Y// f" X/l Xl/ " Y/l

23
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Every epic lens is proxy effective " Uiheity

Corollary

E c equalises its prox .
K grerg/fgii irinl_se(r:\os 9 proxy All epic lenses are regular, strong

and extremal
Corollary
o If tfhekcorr)parlsor! lens to a The lenses left orthogonal to all
cofork exists, surjectivity gives monic lenses are the epic lenses

equations which determine it

e From the coforking property, Corollary

these equations give a well . . . .
defined Comparison lens Monic epic lenses are Isomorphlsms

24
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Every monic lens is effective " fh

Theorem
U creates pushouts of monic lenses with discrete opfibrations

Corollary

U creates cokernel pairs; the cokernel pair of a lens is the
cokernel pair of the inclusion of its image in its target

Proposition
Every monic lens equalises its cokernel pair in Lens

25
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Conclusion " fh

¢ Lens is not complete, but it does have equalisers and proxies for
pullbacks, products and kernel pairs
e Epis and monos in Lens have simple characterisations
¢ Lens is regular-ish
* proxy effective, regular, strong and extremal epis coincide
(all epis are proxy effective)

® (regular) epis and monos form a proxy-pullback-stable orthogonal
factorisation system

Future work
¢ General theory of proxy pullbacks and regular-ish categories?
e Symmetric lenses as relations in Lens?
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