The category of lenses is regular-ish

Matthew Di Meglio

Australian Category Seminar

1 The category Lens

2 Lens is regular-ish

B Monos, epis and images in Lens

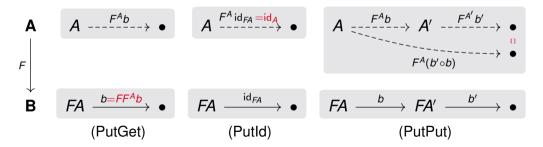
All epis in Lens are proxy effective

What is a lens?

A lens $F : \mathbf{A} \to \mathbf{B}$ consists of

- a *get functor* $F : \mathbf{A} \to \mathbf{B}$, and
- a *put function* F^A : **B**(FA, •) \rightarrow **A**(A, •) for each $A \in |\mathbf{A}|$,

such that



• The composite $G \circ F$ of lenses $F : \mathbf{A} \to \mathbf{B}$ and $G : \mathbf{B} \to \mathbf{C}$ is given by

$$(G \circ F)A = GFA$$

 $(G \circ F)a = GFa$
 $(G \circ F)^{A}c = F^{A}G^{FA}c$

- Lens is the category of small categories and lenses
- $U: Lens \rightarrow Cat$ is the functor that sends each lens to its get functor

1 The category Lens

2 Lens is regular-ish

B Monos, epis and images in Lens

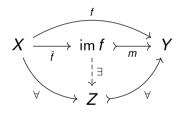
4 All epis in Lens are proxy effective

Regular categories

MACQUARIE University

A category is *regular* if

- it has all finite limits,
- it has image factorisations

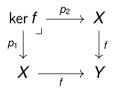


of each $f: X \to Y$, and

• image factorisations are pullback stable.

Equivalently, a category is *regular* if

- it has all finite limits,
- the kernel pair of each $f: X \to Y$

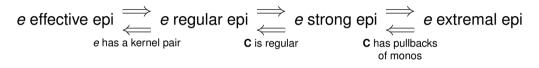


has a coequaliser, and

• regular epis are pullback stable.

Properties of regular categories

For a morphism *e* in a category **C**



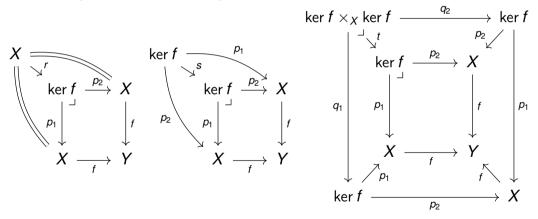
Proposition

In a regular category

- regular epis and monos form an orthogonal factorisation system
- effective epis, regular epis, strong epis and extremal epis coincide

Internal equivalence relations

· kernel pairs are internal equivalence relations



a kernel pair's coequaliser is like the object of its equivalence classes

Limits in Lens

- equalisers
- a terminal object (the terminal object 1 of Cat)
- not all products (e.g. not $\mathbf{2} \times \mathbf{2}$)
- canonical *proxy pullbacks* (these have some similar properties to pullbacks)
- canonical proxy products

(the proxy pullback of the unique cospan over the terminal object)

• canonical proxy kernel pairs

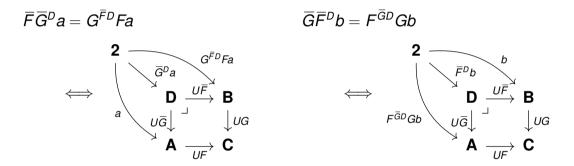
(the proxy pullback of a morphism along itself)

Proxy pullbacks in Lens

In Lens, a span $\mathbf{A} \stackrel{\overline{G}}{\leftarrow} \mathbf{D} \stackrel{\overline{F}}{\rightarrow} \mathbf{B}$ is a *proxy pullback* of $\mathbf{A} \stackrel{\overline{F}}{\rightarrow} \mathbf{C} \stackrel{\overline{C}}{\leftarrow} \mathbf{B}$ if $\mathbf{D} \xrightarrow{F} \mathbf{B}$ • $_{\overline{G}}$ | $_{G}$ is a commuting square in **Lens**, $\mathbf{A} \longrightarrow \mathbf{C}$ $\mathbf{D} \xrightarrow{U\overline{F}} \mathbf{B}$ • $U\overline{G}|^{-1}$ |UG is a pullback square in **Cat**, and $\mathbf{A} \longrightarrow \mathbf{C}$ • for all $D \in |\mathbf{D}|$, all $a \in \mathbf{A}(\overline{G}D, \bullet)$ and all $b \in \mathbf{B}(\overline{F}D, \bullet)$, $\overline{F}\overline{G}^{D}a = G^{\overline{F}D}Fa$ and $\overline{G}\overline{F}^{D}b = F^{\overline{G}D}Gb$.

7

Proxy pullback properties



Proposition

Each pullback of the get functors of a lens cospan lifts uniquely to a proxy pullback of the cospan

Proposition

Proxy pullbacks are unique up to unique isomorphism

Proposition (proxy pullback stability)

The following classes of morphisms in Lens are proxy pullback stable:

- identity morphisms
- isomorphisms

- discrete opfibrations
- split opfibrations

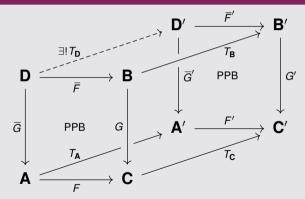
Proxy pullbacks are pullback-ish

Proposition (proxy pullback pasting)

 $\begin{array}{l} \textit{left square is PPB} \implies \textit{outer rectangle is PPB} \\ \textit{left square is PPB} \iff \begin{cases} \textit{outer rectangle is PPB} \\ + \\ \overline{G}\overline{F}^{D}b = F^{\overline{G}D}Gb \quad \forall D \in |\mathbf{D}|, b \in \mathbf{B}(\overline{F}D, \bullet) \end{array}$

Proxy pullbacks are pullback-ish

Proposition (constrained naturality)

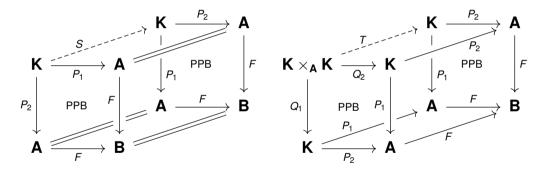


 $FT_{\mathbf{A}}{}^{A}a' = T_{\mathbf{C}}{}^{FA}F'a'$ $GT_{\mathbf{B}}{}^{B}b' = T_{\mathbf{C}}{}^{GB}G'b'$

$$\overline{F} T_{\mathbf{D}}{}^{D} d' = T_{\mathbf{B}}{}^{\overline{F}D} \overline{F}' d'$$
$$\overline{G} T_{\mathbf{D}}{}^{D} d' = T_{\mathbf{A}}{}^{\overline{G}D} \overline{G}' d'$$

Proxy pullbacks are pullback-ish

All proxy kernel pairs have symmetry and transitivity lenses



• The proxy kernel pair of a lens *F* has a reflexivity lens if and only if *F* is a discrete opfibration; in this case, it is a real kernel pair

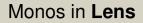
- proxy effective, regular, strong and extremal epis coincide (all epis are proxy effective)
- (regular) epis and monos form an orthogonal factorisation system
- image factorisations are proxy pullback stable
- (regular) epis are proxy pullback stable
- the corestriction of a lens coequalises the lens' proxy kernel pair

The category Lens

2 Lens is regular-ish

3 Monos, epis and images in Lens

4 All epis in Lens are proxy effective



Proposition

U preserves and reflects monos

Reflection was proved by Chollet et al.

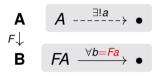
Proof of preservation.

Let $M: \mathbf{A} \to \mathbf{B}$ be a monic lens and P_1, P_2 its proxy kernel pair

- $P_1 = P_2$ as *M* is monic and $M \circ P_1 = M \circ P_2$
- UM is monic as UP_1 , UP_2 is its kernel pair and $UP_1 = UP_2$

Monic lenses are cosieves

A functor $F \colon \mathbf{A} \to \mathbf{B}$ such that



is called a discrete opfibration.

A *cosieve* is an injective-on-objects discrete opfibration.

Proposition

U induces a bijective correspondence between monic lenses and cosieves

Proof.

- If $F \colon \mathbf{A} \to \mathbf{B}$ is a monic lens, UF is
 - monic by preservation,
 - injective on objects and morphisms as it is monic,
 - a discrete opfibration as *F* is an injective-on-morphisms lens.
- If $\overline{F} \colon \mathbf{A} \to \mathbf{B}$ is a cosieve, then
 - there is a unique lens $F : \mathbf{A} \to \mathbf{B}$ such that $UF = \overline{F}$, and
 - F is monic by reflection.

Proposition

Proxy pullbacks along monos are pullbacks

Proposition

A lens $F : \mathbf{A} \to \mathbf{B}$ is monic if and only if $id_{\mathbf{A}}, id_{\mathbf{A}}$ is a proxy kernel pair of F

Corollary

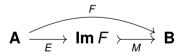
Monic lenses are proxy pullback stable

Proposition

A lens with proxy kernel pair P_1 , P_2 is monic if and only if $P_1 = P_2$; if so, P_1 is iso

Image factorisations in Lens

- · Cosieves are out-degree-zero subcategory inclusions
- The *image* of a lens *F* : A → B is the out-degree-zero subcategory
 Im *F* of B formed by the images of the object and morphism maps of *F*
- Every lens $F : \mathbf{A} \to \mathbf{B}$ has a factorisation



where M is monic and E is surjective on objects and morphisms

Epis in Lens are nicer than epis in Cat

Remark

In Cat

epic \implies surjective on objects

- epic \implies surjective on morphisms
- $\begin{array}{l} {\sf epic} \ \Leftarrow \end{array} \left\{ \begin{array}{c} {\sf surjective \ on \ objects} \\ + \\ {\sf surjective \ on \ morphisms} \end{array} \right.$

Proposition

In Lens

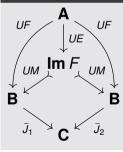
- $epic \iff surjective on objects$
 - \iff surjective on morphisms

Cokernels of get functors lift uniquely

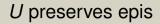
Proposition

Let $F : \mathbf{A} \to \mathbf{B}$ be a lens, and $\overline{J}_1, \overline{J}_2 : \mathbf{B} \to \mathbf{C}$ the cokernel pair of UF. Then there are unique lenses J_1 and J_2 above \overline{J}_1 and \overline{J}_2 , and $J_1 \circ F = J_2 \circ F$.

Proof.



- Let $F = M \circ E$ be the image factorisation of F
- $\bar{J}_1 \circ UM = \bar{J}_2 \circ UM$ as $\bar{J}_1 \circ UF = \bar{J}_2 \circ UF$ and UE is epic
- $\overline{J}_1, \overline{J}_2$ is also the cokernel pair of UM
- \overline{J}_1 and \overline{J}_2 are cosieves as *UM* is a cosieve and cosieves are pushout stable
- discrete opfibrations are uniquely lenses



Proposition

U preserves and reflects epis

Reflection was proved by Chollet et al.

Proof of preservation.

Let $E : \mathbf{A} \to \mathbf{B}$ be an epic lens and J_1, J_2 the unique lenses above the cokernel pair of UE

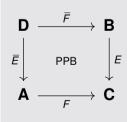
- $J_1 = J_2$ as E is epic and $J_1 \circ E = J_2 \circ E$
- *UE* is epic as UJ_1 , UJ_2 is its cokernel pair and $UJ_1 = UJ_2$

Epic lenses are proxy pullback stable

Proposition

Epic lenses are proxy pullback stable

Proof.



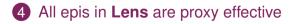
Suppose that *E* is epic. For each $A \in |\mathbf{A}|$

- there is a B ∈ |B| with EB = FA as E is surjective on objects, and
- there is a unique D ∈ |D| with ED = A and FD = B as the square of get functors is a pullback in Cat.
 So E is surjective on objects, and thus epic.

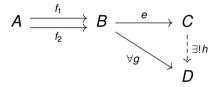
The category Lens

2 Lens is regular-ish

B Monos, epis and images in Lens



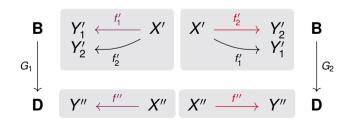
• *e* coequalises f_1 and f_2 if it is their universal cofork



- Cat has all coequalisers, but they aren't usually nice to describe
- Lens doesn't have all coequalisers, nor does U preserve/reflect them
- Lens does have some coequalisers, some of which are reflected by U

Coequaliser non-existence and non-preservation

$$\begin{array}{c|c} \mathbf{A} & \overbrace{Y_1 \leftarrow f_1}^{f_1} & X \xrightarrow{f_2} & Y_2 \\ & & & \\ F_1 \\ & & \\ \mathbf{B} & Y_1' \leftarrow f' & X' \xrightarrow{f_2'} & Y_2' \end{array}$$



- *G*₁ and *G*₂ are the only lenses above the coequaliser of *UF*₁ and *UF*₂
- No lens $H: \mathbf{D} \to \mathbf{D}$ with $G_1 = H \circ G_2$

Every epic lens is proxy effective

Theorem

Every epic lens coequalises its proxy kernel pair in **Lens**

Proof idea.

- If the comparison lens to a cofork exists, surjectivity gives equations which determine it
- From the coforking property, these equations give a well defined comparison lens

Corollary

All epic lenses are regular, strong and extremal

Corollary

The lenses left orthogonal to all monic lenses are the epic lenses

Corollary

Monic epic lenses are isomorphisms

Theorem

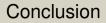
U creates pushouts of monic lenses with discrete opfibrations

Corollary

U creates cokernel pairs; the cokernel pair of a lens is the cokernel pair of the inclusion of its image in its target

Proposition

Every monic lens equalises its cokernel pair in Lens



- Lens is not complete, but it does have equalisers and proxies for pullbacks, products and kernel pairs
- Epis and monos in Lens have simple characterisations
- Lens is regular-ish
 - proxy effective, regular, strong and extremal epis coincide (all epis are proxy effective)
 - (regular) epis and monos form a proxy-pullback-stable orthogonal factorisation system

Future work

- General theory of proxy pullbacks and regular-ish categories?
- Symmetric lenses as relations in Lens?