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What is a lens?

A lens F : A→ B consists of
• a get functor F : A→ B, and
• a put function F A : B(FA, •)→ A(A, •) for each A ∈ |A|,

such that

A A • A • A A′ •
•

B FA

(PutGet)

• FA

(PutId)

• FA FA′

(PutPut)

•

F

F Ab F A idFA =idA F Ab

F A(b′◦b)

F A′b′

b=FF Ab idFA b b′

1



The category of lenses

• The composite G ◦ F of lenses F : A→ B and G : B→ C is given by

(G ◦ F )A = GFA
(G ◦ F )a = GFa

(G ◦ F )Ac = F AGFAc

• Lens is the category of small categories and lenses

• U : Lens→ Cat is the functor that sends each lens to its get functor
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Regular categories

A category is regular if
• it has all finite limits,
• it has image factorisations

X im f Y

Z

f

f

∀

m

∃

∀

of each f : X → Y , and
• image factorisations are

pullback stable.

Equivalently, a category is regular if
• it has all finite limits,
• the kernel pair of each f : X → Y

ker f X

X Y

p1

p2

y
f

f

has a coequaliser, and
• regular epis are pullback stable.

3



Properties of regular categories

For a morphism e in a category C

e effective epi e regular epi e strong epi e extremal epi
e has a kernel pair C is regular C has pullbacks

of monos

Proposition

In a regular category
• regular epis and monos form an orthogonal factorisation system
• effective epis, regular epis, strong epis and extremal epis coincide
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Internal equivalence relations

• kernel pairs are internal equivalence relations

X

ker f X

X Y

r

p1

p2

y

f

f

ker f

ker f X

X Y

p1

p2

s

p1

p2

y

f

f

ker f ×X ker f ker f

ker f X

X Y

ker f X

q2

q1

ty p2

p1p1

p2

y

f

f
p1

p2

f

• a kernel pair’s coequaliser is like the object of its equivalence classes
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Limits in Lens

• equalisers

• a terminal object (the terminal object 1 of Cat)

• not all products (e.g. not 2× 2)

• canonical proxy pullbacks
(these have some similar properties to pullbacks)

• canonical proxy products
(the proxy pullback of the unique cospan over the terminal object)

• canonical proxy kernel pairs
(the proxy pullback of a morphism along itself)

6



Proxy pullbacks in Lens

In Lens, a span A G←− D F−→ B is a proxy pullback of A F−→ C G←− B if

•
D B

A C

F

G G

F

is a commuting square in Lens,

•
D B

A C

UF

UG
y

UG

UF

is a pullback square in Cat, and

• for all D ∈ |D|, all a ∈ A(GD, •) and all b ∈ B(FD, •),

FGDa = GFDFa and GF Db = F GDGb.
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Proxy pullback properties

FGDa = GFDFa

⇐⇒

2

D B

A C

a

GFDFa
GDa

UF

UG
y

UG

UF

GF Db = F GDGb

⇐⇒

2

D B

A C

F GDGb

b
F Db

UF

UG
y

UG

UF

Proposition

Each pullback of the get functors of a lens cospan lifts uniquely to a proxy
pullback of the cospan
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Proxy pullbacks are pullback-ish

Proposition

Proxy pullbacks are unique up to unique isomorphism

Proposition (proxy pullback stability)

The following classes of morphisms in Lens are proxy pullback stable:

• identity morphisms
• isomorphisms

• discrete opfibrations
• split opfibrations
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Proxy pullbacks are pullback-ish

Proposition (proxy pullback pasting)

D B B′

A C C′
G

F

G PPB

F

left square is PPB =⇒ outer rectangle is PPB

left square is PPB ⇐=


outer rectangle is PPB

+

GF Db = F GDGb ∀D ∈ |D|,b ∈ B(FD, •)
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Proxy pullbacks are pullback-ish

Proposition (constrained naturality)

D′ B′

D B

A′ C′

A C

F
′

G
′ G′

G

F

∃!TD TB

F ′

PPB

F

TA TC

GPPB

FTA
Aa′ = TC

FAF ′a′

GTB
Bb′ = TC

GBG′b′

FTD
Dd ′ = TB

FDF
′
d ′

GTD
Dd ′ = TA

GDG
′
d ′
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Proxy pullbacks are pullback-ish

• All proxy kernel pairs have symmetry and transitivity lenses

K A

K A

A B

A B

P2

P1
F

P2

P1

S

F

PPB

F

FPPB

K A

K×A K K

A B

K A

P2

P1
F

Q1

Q2

T P2

F

PPB

P2

P1
F

P1PPB

• The proxy kernel pair of a lens F has a reflexivity lens if and only if F is
a discrete opfibration; in this case, it is a real kernel pair
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Lens is regular-ish

• proxy effective, regular, strong and extremal epis coincide
(all epis are proxy effective)

• (regular) epis and monos form an orthogonal factorisation system

• image factorisations are proxy pullback stable

• (regular) epis are proxy pullback stable

• the corestriction of a lens coequalises the lens’ proxy kernel pair
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Monos in Lens

Proposition

U preserves and reflects monos

Reflection was proved by Chollet et al.

Proof of preservation.

Let M : A→ B be a monic lens and P1,P2 its proxy kernel pair
• P1 = P2 as M is monic and M ◦ P1 = M ◦ P2

• UM is monic as UP1,UP2 is its kernel pair and UP1 = UP2
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Monic lenses are cosieves

A functor F : A→ B such that

A A •

B FA •
F

∃!a

∀b=Fa

is called a discrete opfibration.

A cosieve is an injective-on-objects
discrete opfibration.

Proposition

U induces a bijective correspondence
between monic lenses and cosieves

Proof.

If F : A→ B is a monic lens, UF is
• monic by preservation,
• injective on objects and

morphisms as it is monic,
• a discrete opfibration as F is an

injective-on-morphisms lens.
If F : A→ B is a cosieve, then
• there is a unique lens F : A→ B

such that UF = F , and
• F is monic by reflection.
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Other properties of monic lenses

Proposition

Proxy pullbacks along
monos are pullbacks

Corollary

Monic lenses are proxy
pullback stable

Proposition

A lens F : A→ B is monic if and only if
idA, idA is a proxy kernel pair of F

Proposition

A lens with proxy kernel pair P1,P2 is
monic if and only if P1 = P2; if so, P1 is iso
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Image factorisations in Lens

• Cosieves are out-degree-zero subcategory inclusions

• The image of a lens F : A→ B is the out-degree-zero subcategory
Im F of B formed by the images of the object and morphism maps of F

• Every lens F : A→ B has a factorisation

A Im F B
E

F

M

where M is monic and E is surjective on objects and morphisms
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Epis in Lens are nicer than epis in Cat

Remark

In Cat

epic =⇒ surjective on objects
epic 6=⇒ surjective on morphisms

epic ⇐=


surjective on objects

+

surjective on morphisms

Proposition

In Lens

epic ⇐⇒ surjective on objects
⇐⇒ surjective on morphisms
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Cokernels of get functors lift uniquely

Proposition

Let F : A→ B be a lens, and J1, J2 : B→ C the cokernel pair of UF. Then
there are unique lenses J1 and J2 above J1 and J2, and J1 ◦ F = J2 ◦ F.

Proof.
A

Im F

B B

C

UF
UE

UF

UM UM

J1 J2

• Let F = M ◦ E be the image factorisation of F
• J1 ◦UM = J2 ◦UM as J1 ◦UF = J2 ◦UF and UE is epic
• J1, J2 is also the cokernel pair of UM
• J1 and J2 are cosieves as UM is a cosieve and

cosieves are pushout stable
• discrete opfibrations are uniquely lenses
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U preserves epis

Proposition

U preserves and reflects epis

Reflection was proved by Chollet et al.

Proof of preservation.

Let E : A→ B be an epic lens and J1, J2 the unique lenses above the
cokernel pair of UE
• J1 = J2 as E is epic and J1 ◦ E = J2 ◦ E
• UE is epic as UJ1,UJ2 is its cokernel pair and UJ1 = UJ2
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Epic lenses are proxy pullback stable

Proposition

Epic lenses are proxy pullback stable

Proof.

D B

A C

E

F

PPB E

F

Suppose that E is epic. For each A ∈ |A|
• there is a B ∈ |B| with EB = FA

as E is surjective on objects, and
• there is a unique D ∈ |D| with ED = A and FD = B

as the square of get functors is a pullback in Cat.
So E is surjective on objects, and thus epic.

21



Outline

1 The category Lens

2 Lens is regular-ish

3 Monos, epis and images in Lens

4 All epis in Lens are proxy effective



Coequalisers in Lens

• e coequalises f1 and f2 if it is their universal cofork

A B C

D

f1

f2

e

∀g
∃!h

• Cat has all coequalisers, but they aren’t usually nice to describe

• Lens doesn’t have all coequalisers, nor does U preserve/reflect them

• Lens does have some coequalisers, some of which are reflected by U
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Coequaliser non-existence and non-preservation

• G1 and G2 are the
only lenses above
the coequaliser of
UF1 and UF2

• No lens H : D→ D
with G1 = H ◦G2

A Y1 X Y2 Y1 X Y2 A
Y Y

B Y ′1 X ′ Y ′2 Y ′1 X ′ Y ′2 B

B Y ′1 X ′ X ′ Y ′2 B
Y ′2 Y ′1

D Y ′′ X ′′ X ′′ Y ′′ D

F1

f1 f2

f

f1 f2

f
F2

f ′1 f ′2 f ′1 f ′2

G1

f ′1

f ′2

f ′2

f ′1 G2

f ′′ f ′′
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Every epic lens is proxy effective

Theorem

Every epic lens coequalises its proxy
kernel pair in Lens

Proof idea.

• If the comparison lens to a
cofork exists, surjectivity gives
equations which determine it
• From the coforking property,

these equations give a well
defined comparison lens

Corollary

All epic lenses are regular, strong
and extremal

Corollary

The lenses left orthogonal to all
monic lenses are the epic lenses

Corollary

Monic epic lenses are isomorphisms
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Every monic lens is effective

Theorem

U creates pushouts of monic lenses with discrete opfibrations

Corollary

U creates cokernel pairs; the cokernel pair of a lens is the
cokernel pair of the inclusion of its image in its target

Proposition

Every monic lens equalises its cokernel pair in Lens
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Conclusion

• Lens is not complete, but it does have equalisers and proxies for
pullbacks, products and kernel pairs
• Epis and monos in Lens have simple characterisations
• Lens is regular-ish

• proxy effective, regular, strong and extremal epis coincide
(all epis are proxy effective)

• (regular) epis and monos form a proxy-pullback-stable orthogonal
factorisation system

Future work
• General theory of proxy pullbacks and regular-ish categories?
• Symmetric lenses as relations in Lens?
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