M*- CATECORIES

Martiew Di Mecrio

AUSTRALIAN CATEGORY THEORY SEMINAR
JANUARY 2025



Starting point

AXIOMS FOR THE EGORY OF HILBERT SPACES

CHRIS HELU AND ANDRE KORNELL

lix functions between Hilbert spaces. D

presuppose any ical structure. This addresses a question about the mathematical
foundations of quantum theory raised in reconstruction programmes such as those of von
Neumann, Mackey, Jauch, Piron, Abramsky, and Coecke.

Quantum mechanics has mathematically been firmly founded on Hilbert spaces and op-
erators between them for nearly a century [32]. There has been continuous inquiry into the
special status of this foundation since |26, 8, 16,. How are the mathematical axioms to be

? Can the theory be reconstructed from a different framework whose
axioms can be interpreted physically? Such reconstruction programmes involve a mathemat-
ical reformulation of (a generalisation of) the theory of Hilbert spaces and their operators,
such as operator algebras |23, orthomodular latt [13/125], and, most recently, categorical
quantum mechanies [1,15]. The latter uses the framework of category theory | and em-
phasises operators more than their underlying Hilbert spaces. It postulates a category with
structure that models physical features of quantum theory [12]. The question of how “to
justify the use of Hilbert space” [25] then becomes: which axioms guarantee that a category
is equivalent to that of continuous linear functions between Hilbert spaces? This article an-
swers that mathematical question. The axioms are purely categorical in nature, and do not
presuppose any analytical structure such as continuity, complex numbers, or probabilities.
The approach is similar to Lawvere’s categorical characterisation of the theory of sets [17].
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Abstract

The categories of real and of complex Hilbert spaces with bounded linear maps have
received purely categorical characterisations by Chris Heunen and Andre Kornell. These
characterisations are achieved through Solér's theorem, a result which shows that certain
orthomodularity conditions on a Hermitian space over an involutive division ring result in a
Hilbert space with the division ring being either the reals, complexes or quaternions. The
characterisation by Heunen and Kornell makes use of a monoidal structure, which in turn
excludes the category of quaternionic Hilbert spaces. We provide an alternative characterisa-
tion without the assumption of monoidal structure on the category. This new approach not
only gives a new characterisation of the categories of real and of complex Hilbert spaces, but
also the category of quaternionic Hilbert spaces.
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DAGGER CATEGORIES AND THE COMPLEX NUMBERS:
AXIOMS FOR THE CATEGORY OF FINITE-DIMENSIONAL
HILBERT SPACES AND LINEAR CONTRACTIONS

MATTHEW DI MEGLIO AND CHRIS HEUNEN

Asstnacr. We characterise the category of finlte-dimensional Hilbert spaces
and lincar contractions using slmple category-theoretic axioms that do not
refer to norms, continulty, dimension, or real pumbers. Our proof directly
redates limits in category theary to limits in anal , using a pew variant of

the classical characterisation of the real numbers instead of Solir's theorem

1. INTRODUCTION

The category Hilb of Hilbert spaces and bounded linear maps and the category

Con of Hilbert spaces and linear contractions were both recently characterised in

terms of simple category-theoretic structures and properties (6. 7). For example,

the structure of a dagger encodes adjoints of linear maps. Remarkably, none of
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An M*™ring is a partially ordered *-ring That is
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a=>71 implies o invertible

A filbert module over an M*ring R is an inner product
right R-module that s orthogonally complete
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() Not necessarily complex
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IF C 1s o complex M*-category with a separator A then
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where  is unitarily ess.o0, faithful | and full on contractions
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™) It Risadivision ring, then R2 R € or H

Wi) If R is commufative, exists projection p such that
* Rp s a complex M*algebra

* R(1-p) is o real M*-glgebra. with trivial involution



