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Want to understand the

directed colimitaxiom
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Bounded codirected limits of contractions in Hilb
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Let C be an M *-category Need directed colimits

in2
rather thanC

CA
,
A) is a partially ordered *-ring
ab() b a 99 A

for some X and geC(A .
X)

go
ga

&

f is a contraction if ff I fo Fo

~ Fax

PROPOSITION :
99 SUP Gag
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What about completeness

of arbitrary homsets ?
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DEFINITION :
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We assumed

(5) C has directed colimits.

but used
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DEFINITION :

A codilator of a morphism f :X Y is an initial codilation of f

<Sr
-

SAL -[S1S2]
-Sz SiS 1 Saf 35 1

XfY
vi is ↳21 F21

(like a cotabulation in an allegory) 18
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PROPOSITION :
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TRICK :

If f : X >Y is a contraction
,
then

(14
-

4)f H 1
,

2, ...

is a strict contraction. 13
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An M *-ring is a partially ordered *-ring that is
symmetric , monotone complete and orthogonally complete.

a 1 implies a invertible

DEFINITION :

A Hilbert module over an M
*

-ring R is an inner product
right R-module that is orthogonally complete
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*- algebras
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eg. Arens algebra

(i) Ilrll could be a
↳ (0

,
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(ii) not necessarily complex
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PROPOSITION : 17

If R is complex or commutative then Hilbr is an M*-category

THEOREM :

If ( is a complex M *-category with a separator A, then

F
> Hilbaca

,a)

C (A, -
-Set

where F is unitarily e .S .
o
,
faithful

,
and full on contractions
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m dimeglio & ed . ac . uk

https : //mdimeglio . github . io



If R is an M *-ring , then 19

(i) R is uniquely an IR-algebra,

(ii) The extended norm 11 II : R > [0
,
o] defined by

Irll = inf(x = [0, 0] r* xX2)
is complete ,

(ii) R is a Baer * -ring ,

(iv) For all a 0
,
exists unique b O such that b = a



If R is an M *-ring , then 19

() If R is a division ring , then R = R , K , or IH

(vi) If R is commutative , exists projection p such that

· Rp is a complex M
*
- algebra

· R(1-p) is a real M *-algebra with trivial involution


