DAGGER CATEGORIES OF RELATIONS The Return of the Regular-ish Category

Joint work with Chris Heunen, Paolo Perrone and Dario Stein

AUSTRALIAN CATEGORY SEMINAR FEBRUARY 2025

Bijection between contractions and relations in category of coisometries

Linear maps $f:X \rightarrow Y$ between Hilbert spaces such that $||fx|| \leq ||x||$ for all $x \in X$

Bijection between contractions and relations in category of coisometries

Linear maps $f:X \rightarrow Y$ between Hilbert spaces such that $||fx|| \leq ||\chi||$ for all $\chi \in X$

Bijection between contractions and relations in category of coisometries

lsomorphism classes of jointly monic spans

Linear maps $f:X \rightarrow Y$ between Hilbert spaces such that $||fx|| \leq ||\chi||$ for all $\chi \in X$

Bijection between contractions and relations in category of coisometries

Adjointable maps $f: X \rightarrow Y$ such that $ff^{\dagger}=1$ (orthogonal projections onto closed subspaces)

lsomorphism classes of jointly monic spans

But category of coisometries is not regular

But category of coisometries is not regular

It does not have pullbacks

DEFINITION A t-category is a category with $f^+:Y \rightarrow X$ for each $f:X \rightarrow Y$ such that $1^+=1$ $(gf)^+=f^+g^+$ $f^{++}=f$

DEFINITION A t-category is a category with $f^+: Y \rightarrow X$ for each $f: X \rightarrow Y$ such that $1^{+} = 1$ $(gf)^{+} = f^{+}q^{+}$ $f^{++} = f$ EXAMPLES Con Hilbert spaces and contractions $\langle \mathbf{y} | \mathbf{f}_{\mathbf{x}} \rangle = \langle \mathbf{f}^{\dagger} \mathbf{y} | \mathbf{x} \rangle$

DEFINITION A t-category is a category with $f^+: Y \rightarrow X$ for each $f: X \rightarrow Y$ such that $1^{+} = 1$ $(qf)^{+} = f^{+}q^{+}$ $f^{++} = f$ EXAMPLES Con Hilbert spaces and contractions $\langle \mathbf{y} | \mathbf{f}_{\mathbf{X}} \rangle = \langle \mathbf{f}^{\dagger} \mathbf{y} | \mathbf{x} \rangle$ Plnj Sets and injective partial functions $y = fx \iff x = f^+y$

DEFINITION A t-category is a category with $f^+: Y \rightarrow X$ for each $f: X \rightarrow Y$ such that $1^{+} = 1$ $(qf)^{+} = f^{+}q^{+}$ $f^{++} = f^{+}q^{+}$ EXAMPLES Con Hilbert spaces and contractions $\langle \mathbf{y} | \mathbf{f} \mathbf{x} \rangle = \langle \mathbf{f}^{\dagger} \mathbf{y} | \mathbf{x} \rangle$ Plnj Sets and injective partial functions $y = fx \iff x = f^+y$

FinPS

A finite probability space X is a finite set X equipped with a function $\mathbb{P}_{x}: X \rightarrow (0, 1]$ such that $\sum_{x \in X} \mathbb{P}_{x}(x) = 1$.

DEFINITION A t-category is a category with $f^+: Y \rightarrow X$ for each $f: X \rightarrow Y$ such that $1^{+} = 1$ $(qf)^{+} = f^{+}q^{+}$ $f^{++} = f^{+}q^{+}$ EXAMPLES Con Hilbert spaces and contractions $\langle \mathbf{y} | \mathbf{f}_{\mathbf{x}} \rangle = \langle \mathbf{f}^{\dagger} \mathbf{y} | \mathbf{x} \rangle$ Plnj Sets and injective partial functions $y = fx \iff x = f^+y$

FinPS

A finite probability space X is a finite set X equipped with a function $\mathbb{P}_{x}: X \rightarrow (0, 1]$ such that $\sum_{x \in X} \mathbb{P}_{x}(x) = 1$.

A stochastic map $f: X \rightarrow Y$ is a function $P_f(-|-): Y \times X \rightarrow [0,1]$ such that $\sum_{y \in Y} P_f(y|x) = 1$ $\sum_{x \in X} P_f(y|x) P_x(x) = P_Y(y)$

DEFINITION A t-category is a category with $f^+:Y \rightarrow X$ for each $f:X \rightarrow Y$ such that $1^{+} = 1$ $(qf)^{+} = f^{+}q^{+}$ $f^{++} = f$ EXAMPLES Con Hilbert spaces and contractions $\langle \mathbf{y} | \mathbf{f} \mathbf{x} \rangle = \langle \mathbf{f}^{\dagger} \mathbf{y} | \mathbf{x} \rangle$ Plnj Sets and injective partial functions $y = fx \iff x = f^{+}y$

FinPS

A finite probability space X is a finite set X equipped with a function $\mathbb{P}_{x}: X \rightarrow (0, 1]$ such that $\sum_{x \in X} \mathbb{P}_{x}(x) = 1$.

A stochastic map $f: X \rightarrow Y$ is a function $P_f(-|-): Y \times X \rightarrow [0,1]$ such that $\sum_{y \in Y} P_f(y|x) = 1$ $\sum_{x \in X} P_f(y|x) P_x(x) = P_Y(y)$

The Bayesian inverse f^+ of f is given by $IP_f(y|x) IP_x(x) = IP_{f^+}(x|y) IP_y(y)$

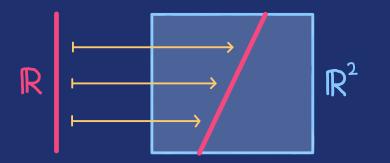
2

Let Coisometry(C) be the wide subcategory of coisometries in C.

Let Coisometry(C) be the wide subcategory of coisometries in C.

EXAMPLES

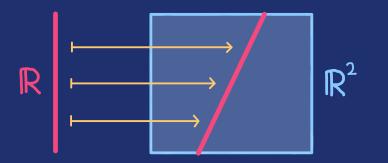
lsometries in Con are inclusions of closed subspaces.



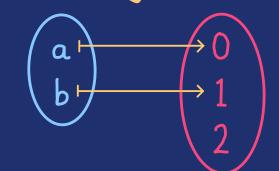
Let Coisometry(C) be the wide subcategory of coisometries in C.

EXAMPLES

lsometries in Con are inclusions of closed subspaces.



Isometries in Plnj are total.



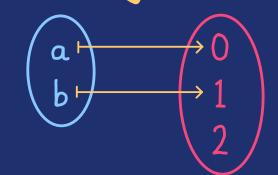
Let Coisometry(C) be the wide subcategory of coisometries in C.

EXAMPLES

lsometries in Con are inclusions of closed subspaces.

 \mathbb{R}^2

Isometries in Plnj are total.



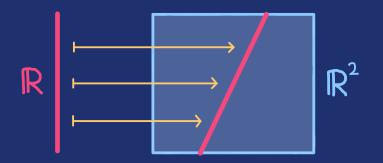
Coisometries in FinPS are deterministic

 $\mathbb{P}_{f}(y \mid x) \in \{0, 1\}$

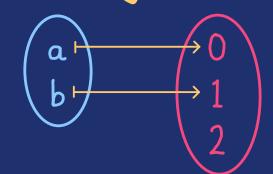
Let Coisometry(C) be the wide subcategory of coisometries in C.

EXAMPLES

lsometries in Con are inclusions of closed subspaces.



Isometries in Plnj are total.



Coisometries in FinPS are deterministic

 $\mathbb{P}_{f}(y|x) \in \{0,1\}$

Write falso for the underlying function

$$\mathbb{P}_{f}(y|x) = \begin{cases} 1 & \text{if } y = fx \\ 0 & \text{otherwise} \end{cases}$$

$$\chi \xleftarrow{S_1} \varsigma \xrightarrow{S_2} \gamma$$

of coisometries such that $f = s_2 s_1^+$.

$$\chi \xleftarrow{S_1} \varsigma \xrightarrow{S_2} \gamma$$

of coisometries such that $f = s_2 s_1^+$.

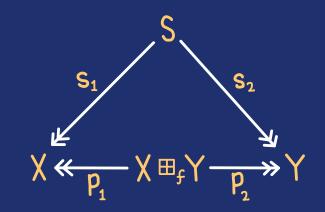
$$\chi \xleftarrow{S_1} \varsigma \xrightarrow{S_2} \gamma$$

of coisometries such that $f = s_2 s_1^+$.

$$\chi \ll \underline{p_1} \chi \boxplus_f \Upsilon - \underline{p_2} \gg \Upsilon$$

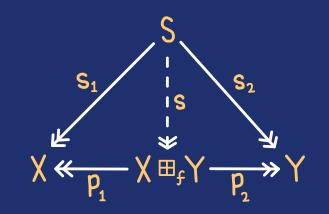
$$\chi \xleftarrow{S_1} \varsigma \xrightarrow{S_2} \gamma$$

of coisometries such that $f = s_2 s_1^+$.



$$\chi \xleftarrow{S_1} \varsigma \xrightarrow{S_2} \gamma$$

of coisometries such that $f = s_2 s_1^+$.



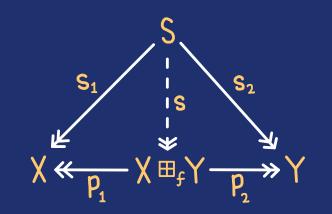
of coisometries such that $f = s_2 s_1^+$.

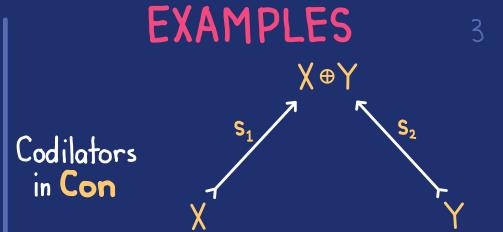
A dilator of f is a terminal dilation of f.



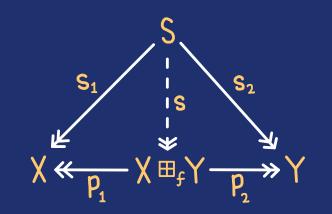
EXAMPLES $X \oplus Y$ Codilators $\begin{bmatrix} \sqrt{1-ff^*} & f \end{bmatrix}$ in Con

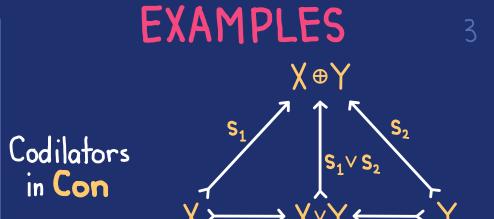
of coisometries such that $f = s_2 s_1^+$.





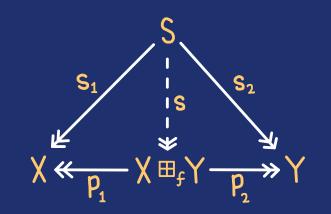
of coisometries such that $f = s_2 s_1^+$.





of coisometries such that $f = s_2 s_1^+$.

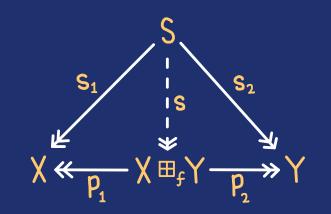
A dilator of f is a terminal dilation of f.

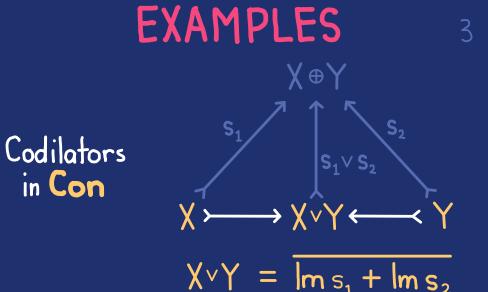


EXAMPLES $\chi \oplus \Upsilon$ Codilators in Con $\chi \oplus \Upsilon$ $s_1 \qquad f_1 \qquad f_2 \qquad f_2 \qquad f_3 \qquad f_3$

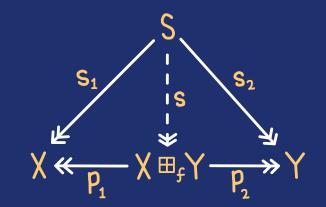
$$\langle Y = |m_{S_1} + |m_{S_2}|$$

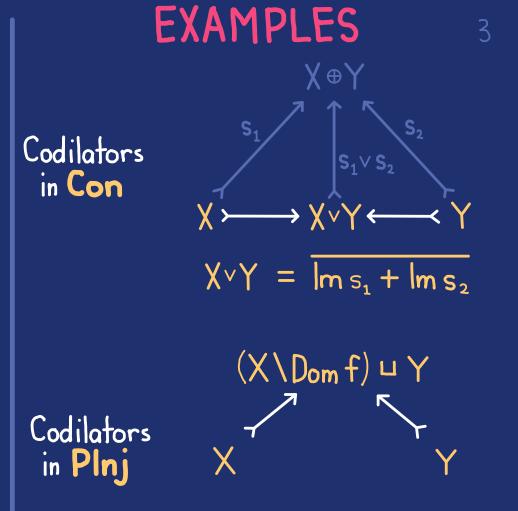
of coisometries such that $f = s_2 s_1^+$.



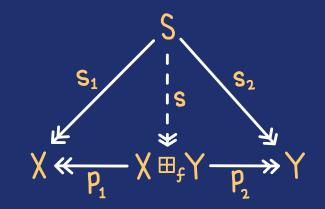


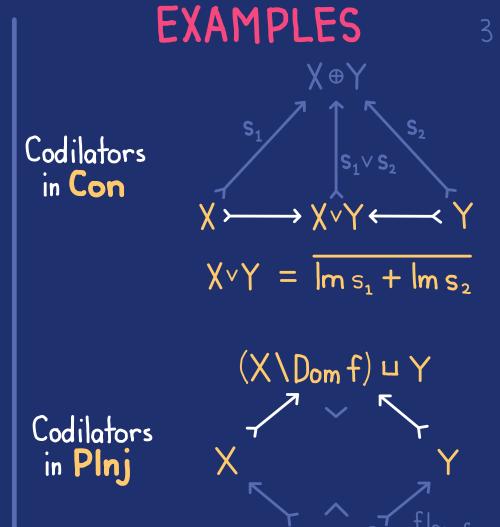
of coisometries such that $f = s_2 s_1^+$.





of coisometries such that $f = s_2 s_1^+$.

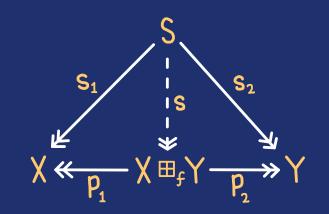




$$\chi \xleftarrow{S_1} \varsigma \xrightarrow{S_2} \gamma$$

of coisometries such that $f = s_2 s_1^+$.

A dilator of f is a terminal dilation of f.

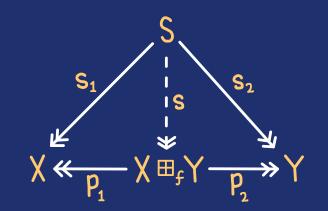


EXAMPLES

$$\chi \xleftarrow{S_1} \varsigma \xrightarrow{S_2} \gamma$$

of coisometries such that $f = s_2 s_1^+$.

A dilator of f is a terminal dilation of f.



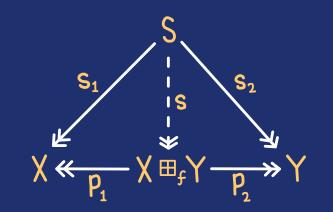
EXAMPLES

Dilators in **FinPS**

$$\chi \xleftarrow{S_1} \varsigma \xrightarrow{S_2} \gamma$$

of coisometries such that $f = s_2 s_1^+$.

A dilator of f is a terminal dilation of f.



EXAMPLES

Dilators in **FinPS**

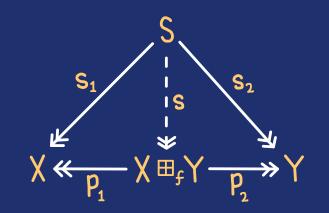
$$X \boxplus_{f} Y = \{(x, y) \in X \times Y : \mathbb{P}_{f}(y|x) \neq 0\}$$

$$\chi \stackrel{\mathsf{P}_1}{\longleftarrow} \chi \boxplus_{\mathsf{f}} \Upsilon \stackrel{\mathsf{P}_2}{\longrightarrow} \Upsilon$$

DEFINITION A dilation of $f: X \rightarrow Y$ is a span

of coisometries such that $f = s_2 s_1^+$.

A dilator of f is a terminal dilation of f.



EXAMPLES

Dilators in **FinPS**

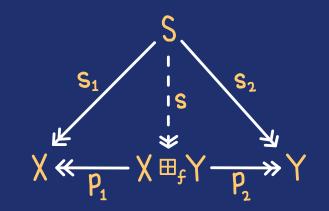
$$X \boxplus_{f} Y = \{(x, y) \in X \times Y : \mathbb{P}_{f}(y|x) \neq 0\}$$
$$\mathbb{P}_{x \equiv_{f} Y}(x, y) = \mathbb{P}_{f}(y|x)\mathbb{P}_{x}(x)$$

$$\chi \xleftarrow{P_1} \chi \boxplus_f \Upsilon \xrightarrow{P_2} \Upsilon$$

DEFINITION A dilation of $f: X \rightarrow Y$ is a span

of coisometries such that $f = s_2 s_1^+$.

A dilator of f is a terminal dilation of f.



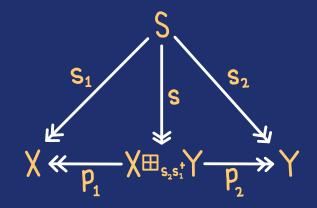
EXAMPLES

Dilators in **FinPS**

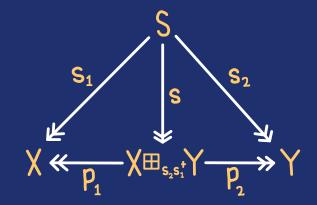
$$X \boxplus_{f} Y = \{(x, y) \in X \times Y : \mathbb{P}_{f}(y|x) \neq 0\}$$
$$\mathbb{P}_{x \circledast_{f} Y}(x, y) = \mathbb{P}_{f}(y|x)\mathbb{P}_{x}(x)$$

$$\chi \stackrel{\mathsf{P}_1}{\longleftarrow} \chi \boxplus_{\mathsf{f}} \Upsilon \stackrel{\mathsf{P}_2}{\longrightarrow} \Upsilon$$

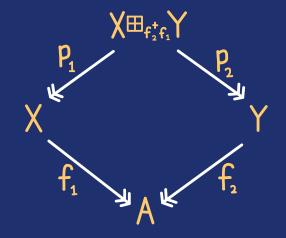
 $p_1(x,y) = x$ $p_2(x,y) = y$



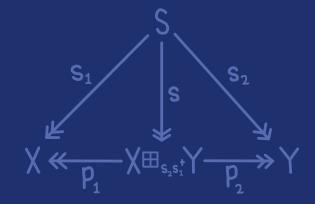
factorisation of spans



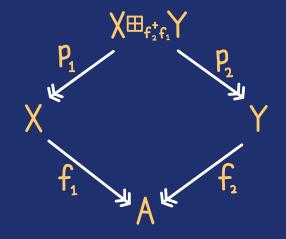
factorisation of spans



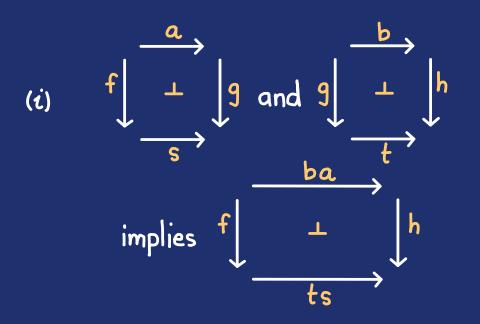
"pullbacks"

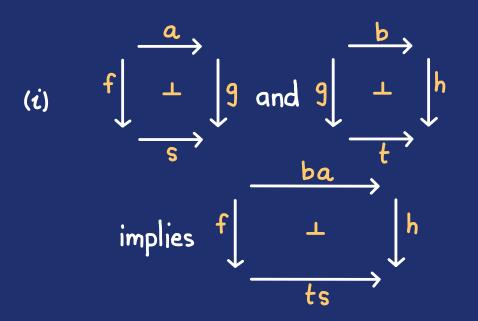


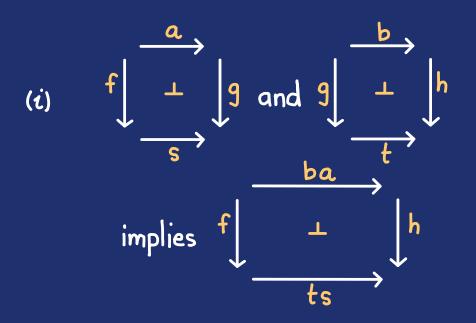
factorisation of spans

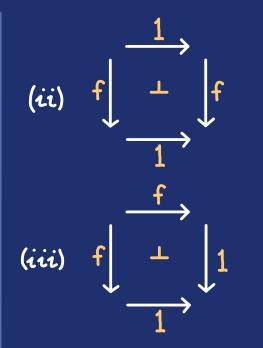


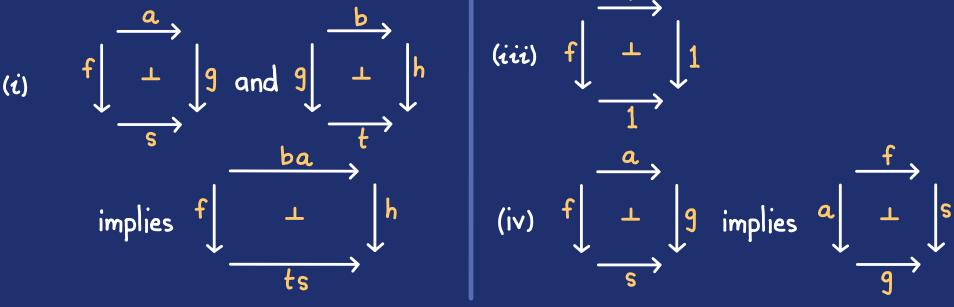
"pullbacks"



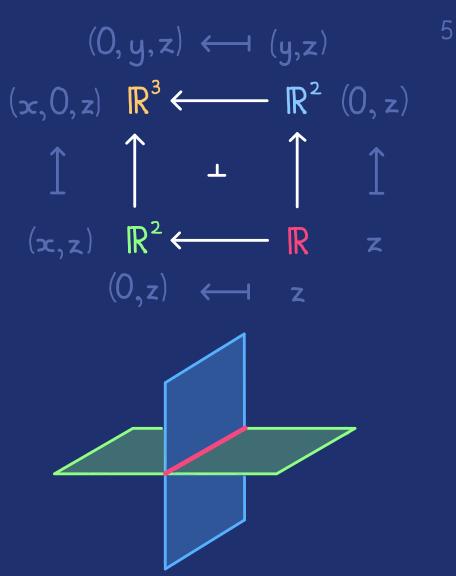






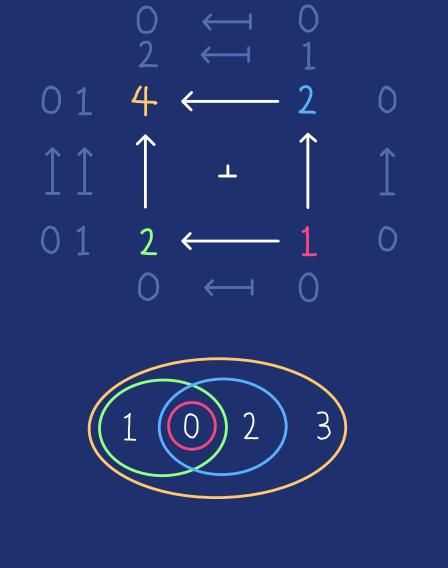


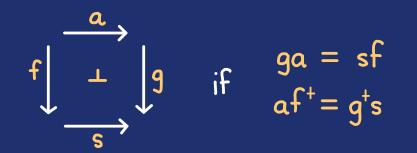
EXAMPLES In Isometry(Con), - captures relative orthogonality.





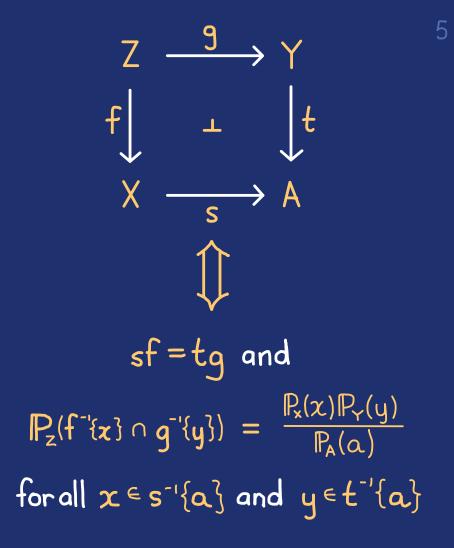
EXAMPLES In Isometry(PInj), - captures relative disjointness.





EXAMPLES

In Coisometry(FinPS),



DEFINITION In an independence category, an independent pullback is a square

such that for all

9

Inspired by Simpson "Equivalence and Independence in Atomic Sheaf Logic"

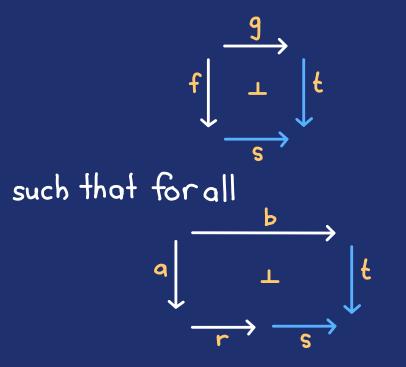
exists unique c such that

a

f and b = gc.

6

DEFINITION In an independence category, an independent pullback is a square



exists unique c such that 6 a $\downarrow \perp \downarrow f$ and b = gc. r Weak independent pullbacks are similar, but with r = 1.

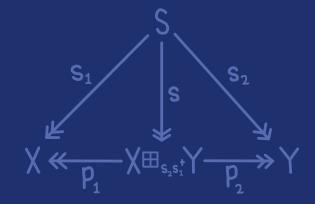
DEFINITION In an independence category, an independent pullback is a square

such that for all

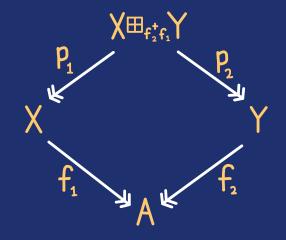
exists unique c such that 6 a $\downarrow \perp \downarrow f$ and b = gc. r Weak independent pullbacks are similar, but with r = 1.

LEMMA

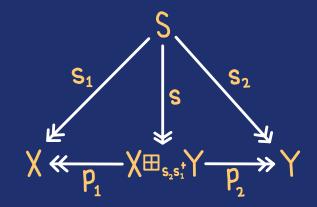
If C is a t-category with dilators, then Coisometry(C) has weak independent pullbacks.



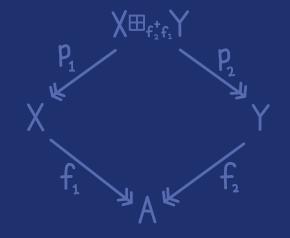
factorisation of spans



"pullbacks"



factorisation of spans

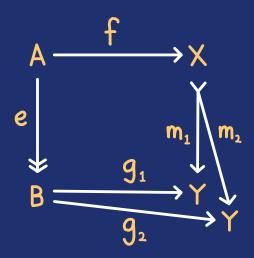


"pullbacks"

A morphism e is strong epic if it is left orthogonal to the jointly monic spans.

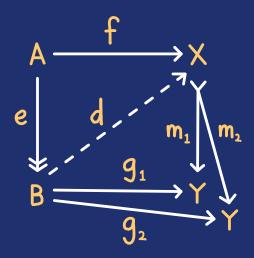
(Non-standard definition)

A morphism e is strong epic if it is left orthogonal to the jointly monic spans.



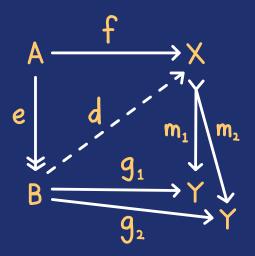
(Non-standard definition)

A morphism e is strong epic if it is left orthogonal to the jointly monic spans.



(Non-standard definition)

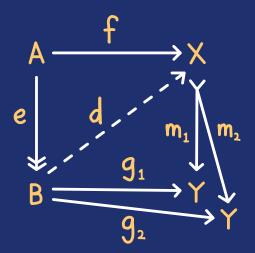
A morphism e is strong epic if it is left orthogonal to the jointly monic spans.



(Non-standard definition)

LEMMA 7 Let C be a t-category with dilators. Then (c) A span in Coisometry(C) is jointly monic if and only if it is a dilator in C.

A morphism e is strong epic if it is left orthogonal to the jointly monic spans.



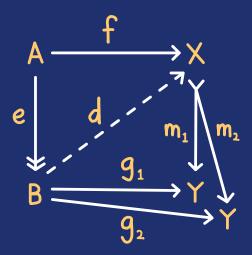
(Non-standard definition)

LEMMA 7 Let C be a t-category with dilators. Then (i) A span in Coisometry(C) is

jointly monic if and only if it is a dilator in C.

(ii) Every morphism in Coisometry(C) is strong epic.

A morphism e is strong epic if it is left orthogonal to the jointly monic spans.



(Non-standard definition)

LEMMA 7 Let C be a t-category with dilators. Then (i) A span in Coisometry(C) is jointly monic if and only if it is a

(ii) Every morphism in Coisometry(C) is strong epic.

dilator in C.

(iii) Every span in Coisometry(C) has a (strong epic, jointly monic) factor isation.

(i) it has weak independent pullbacks,

(i) it has weak independent pullbacks,

every span factors as a strong epi (ii) followed by a jointly monic span,

(i) it has weak independent pullbacks,

every span factors as a strong epi (ii) followed by a jointly monic span,

(iii) every morphism is strong epic,

(i) it has weak independent pullbacks,

every span factors as a strong epi (ii) followed by a jointly monic span,

(iii) every morphism is strong epic,

 $\begin{array}{ccc} & X & \xrightarrow{1} & X \\ \text{(iv) if } 1 & \downarrow & \downarrow f \text{ then f is monic.} \\ & X & \xrightarrow{f} & Y \end{array}$

DEFINITION An independence category is regular-ish if (i) it has weak independent pullbacks, THEOREM 10 Let C be a t-category with dilators. Then Coisometry(C) is regular-ish.

every span factors as a strong epi (ii) followed by a jointly monic span,

(iii) every morphism is strong epic,

 $\begin{array}{ccc} & X & \xrightarrow{1} & X \\ \text{(iv) if } 1 & \downarrow & \downarrow f \text{ then f is monic.} \\ & X & \xrightarrow{f} & Y \end{array}$

THEOREM 8 Let C be a t-category with dilators. Then Coisometry(C) is regular-ish.

LEMMA

In a regular-ish independence category every weak independent pullback is an independent pullback.

DEFINITION An independence category is regular-ish if

(i) it has weak independent pullbacks,

every span factors as a strong epi (ii) followed by a jointly monic span,

(iii) every morphism is strong epic,

 $\begin{array}{ccc} & X & \xrightarrow{1} & X \\ \text{(iv) if } 1 & \downarrow & \downarrow f \text{ then f is monic.} \\ & X & \xrightarrow{f} & Y \end{array}$

DEFINITION Let D be a regular-ish independence category. Define Rel(D) as follows:

• objects are objects of D

 morphisms are relations in (isomorphism classes of jointly monic spans)

composition is by independent
pullback and span factorisation

DEFINITION Let D be a regular-ish independence category. Define Rel(D) as follows:

• objects are objects of D

 morphisms are relations in (isomorphism classes of jointly monic spans)

composition is by independent
pullback and span factorisation

THEOREM

9

- Rel(D) is a dagger category with dilators.
- Coisometry $(Rel(D)) \cong D$

Rel(Coisometry(C)) ≌ C

What is the connection between dilators and tabulators?

A partial map is a morphism f such that $ff^+ \leq 1$.

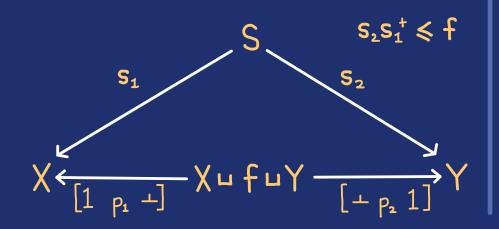
A partial map is a morphism f such that $ff^+ \leq 1$.

A partial map is a morphism f such that $ff^+ \leq 1$.

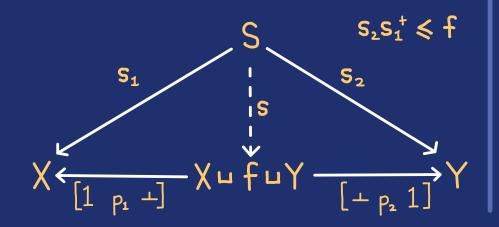
$$X \underbrace{\{1 \ p_1 \perp\}} X \sqcup f \sqcup Y \xrightarrow{[1 \ p_2 1]} Y$$

1()

A partial map is a morphism f such that $ff^+ \leq 1$.

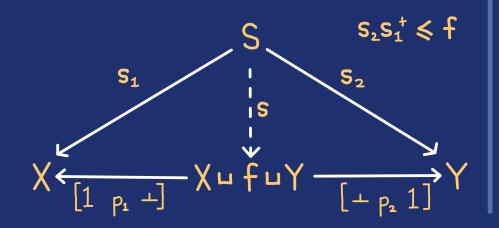


A partial map is a morphism f such that $ff^+ \leq 1$.



A partial map is a morphism f such that $ff^+ \leq 1$.

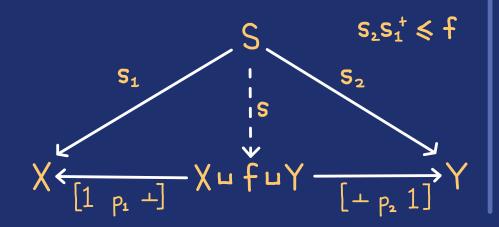
Let $f: X \rightarrow Y$ be a relation.



A morphism $f:(X,x) \rightarrow (Y,y)$ in 10 **Rel**_{*} is a relation $f:X \rightarrow Y$ such that $(x,y) \in f$.

A partial map is a morphism f such that $ff^+ \leq 1$.

Let $f: X \rightarrow Y$ be a relation.

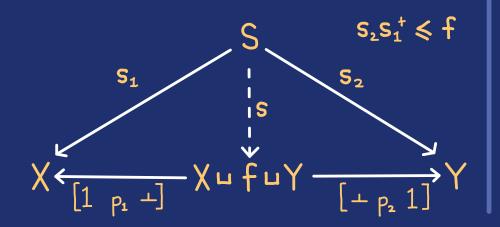


A morphism $f:(X,x) \rightarrow (Y,y)$ in 10 **Rel**_{*} is a relation $f:X \rightarrow Y$ such that $(x,y) \in f$.

The tabulator of $f: (X, x) \rightarrow (Y, y)$ is $(X, x) \xleftarrow{P_1} (f, (x, y)) \xrightarrow{P_2} (Y, y)$

A partial map is a morphism f such that $ff^+ \leq 1$.

Let $f: X \rightarrow Y$ be a relation.



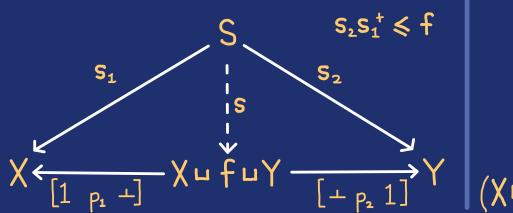
A morphism $f:(X,x) \rightarrow (Y,y)$ in 10 **Rel**_{*} is a relation $f:X \rightarrow Y$ such that $(x,y) \in f$.

The tabulator of $f: (X, x) \rightarrow (Y, y)$ is $(X, x) \xleftarrow{P_1} (f, (x, y)) \xrightarrow{P_2} (Y, y)$

Consider $Rel \rightarrow Rel_*$:

A partial map is a morphism f such that $ff^+ \leq 1$.

Let $f: X \rightarrow Y$ be a relation.



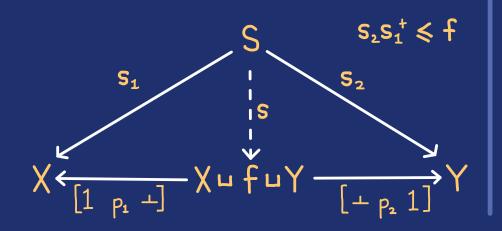
A morphism $f:(X,x) \rightarrow (Y,y)$ in 10 **Rel**_{*} is a relation $f:X \rightarrow Y$ such that $(x,y) \in f$.

The tabulator of $f: (X, x) \rightarrow (Y, y)$ is $(X, x) \xleftarrow{P_1} (f, (x, y)) \xrightarrow{P_2} (Y, y)$

Consider **Rel → Rel***: X T

A partial map is a morphism f such that $ff^+ \leq 1$.

Let $f: X \rightarrow Y$ be a relation.



A morphism $f:(X,x) \rightarrow (Y,y)$ in 10 **Rel**_{*} is a relation $f:X \rightarrow Y$ such that $(x,y) \in f$.

The tabulator of $f: (X, x) \rightarrow (Y, y)$ is $(X, x) \xleftarrow{P_1} (f, (x, y)) \xrightarrow{P_2} (Y, y)$

PROJECTS With Heynen, Perrone and Stein

m.dimeglio@ed.ac.uk

PROJECTS

With Heunen, Perrone and Stein

Characterise the category of Hilbert spaces and coisometries

m.dimeglio@ed.ac.uk

All coisometries have a quantum interpretation

PROJECTS

With Heunen, Perrone and Stein

Characterise the category of Hilbert spaces and coisometries

Not a f-category

m.dimeglio@ed.ac.uk

All coisometries have a quantum interpretation

PROJECTS

With Heunen, Perrone and Stein

Characterise the category of Hilbert spaces and coisometries Characterise a category of probability spaces

Not a f-category

m.dimeglio@ed.ac.uk

All coisometries have a quantum interpretation

PROJECTS

With Heunen, Perrone and Stein

The first characterisation in categorical probability

Characterise the category of Hilbert spaces and coisometries Characterise a category of probability spaces

Not a +-category

Not Markov categories

m.dimeglio@ed.ac.uk