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Let D be a regular-ish independence

category. Define Rel(D) as follows :
· RellD) is a dagger category with
dilators.

· objects are objects of D
· Coisometry (ReKDI)

- D

· morphisms are relations in

Lisomorphism classes of · Rel(Coisometry (C)
- C

jointly monic spans)

· composition is by independent
pullback and span factorisation



What is the connection between
dilators and tabulators ?



Rel is a poset-enriched +-category. 10

f g implies f- g
+



Rel is a poset-enriched +-category. 10

f g implies f- g
+

* partial map is amorphism f such
that If

"
1

.



Rel is a poset-enriched +-category. 10

f g implies f- g
+

* partial map is amorphism f such
that If

"
1

.

Let f :X <Y be a relation.



Rel is a poset-enriched +-category. 10

f g implies f- g
+

* partial map is amorphism f such
that If

"
1

.

Let f :X <Y be a relation.

(1p] v fw (p21]



Rel is a poset-enriched +-category. 10

f g implies f- g
+

* partial map is amorphism f such
that If

"
1

.

Let f :X <Y be a relation.

S S2S* F

S1 S2

11p]wf [P21]



Rel is a poset-enriched +-category. 10

f g implies f- g
+

* partial map is amorphism f such
that If

"
1

.

Let f :X <Y be a relation.

S S2S* F

S1 S2

S

[1p+ ]
v f w

(p21]



Rel is a poset-enriched +-category. A morphism f : (X,) < (Y
, y) in 10

f g implies f- g
+ Relx is a relation f:

such that ( , y) Ef.

* partial map is amorphism f such
that If

"
1

.

Let f :X <Y be a relation.

S S2S* F

S1 S2

S

[1p+ ]
v f w

(p21]



Rel is a poset-enriched +-category. A morphism f : (X,) < (Y
, y) in 10

f g implies f- g
+ Relx is a relation f:

such that ( , y) Ef.

* partial map is amorphism f such
that If

"
1

.
The tabulator off: (X

,x) ((Y, y) is
PP21

(X() > (f , (,y)) (Y,y)
Let f :X <Y be a relation.

S S2S* F

S1 S2

S

[1p+ ]
v f w

(p21]



Rel is a poset-enriched +-category. A morphism f : (X,) < (Y
, y) in 10

f g implies f- g
+ Relx is a relation f:

such that ( , y) Ef.

* partial map is amorphism f such
that If

"
1

.
The tabulator off: (X

,x) ((Y, y) is

(X
,
x)(P + (f

,
(
,
y))Pa (Y

,y)
Let f :X <Y be a relation.

Consider Rel > Relx :

S S2S* F

S1 S2

S

[1p+ ]
v f w

(p21]



Rel is a poset-enriched +-category. A morphism f : (X,) < (Y
, y) in 10

f g implies f- g
+ Relx is a relation f:

such that ( , y) Ef.

* partial map is amorphism f such
that If

"
1

.
The tabulator off: (X

,x) ((Y, y) is
P2

(X
,
x) <

P + (f
,
(
,y)) < (Y

,y)
Let f :X <Y be a relation.

Consider Rel > Relx :

S S2S* F

S1 S2

S ~

11p]wf [P1] (XWS 3.



Rel is a poset-enriched +-category. A morphism f : (X,) < (Y
, y) in 10

f g implies f- g
+ Relx is a relation f:

such that ( , y) Ef.

* partial map is amorphism f such
that If

"
1

.
The tabulator off: (X

,x) ((Y, y) is

(X
,
x)(P + (f

,
(
,
y))Pa (Y

,y)
Let f :X <Y be a relation.

Consider Rel > Relx :

S S2S* F >
f

S1 S2

S ~ ~ ~

[E
.
is)

11p]wf [P1] (XWS 3. < (YWS 3.



PROJECTS
With Heunen

,
Perrone and Stein

m
.dimeglioged .

ac
.
uk https : //mdimeglio. github .

io



PROJECTS
With Heunen

,
Perrone and Stein

Characterise
the category of
Hilbert spaces
and coisometries

m
.dimeglioged .

ac
.
uk https : //mdimeglio. github .

io



All coisometries PROJECTS
have a quantum
interpretation With Heunen

,
Perrone and Stein

Characterise
the category of
Hilbert spaces
and coisometries

Not a +-category

m
.dimeglioged .

ac
.
uk https : //mdimeglio. github .

io



All coisometries PROJECTS
have a quantum
interpretation With Heunen

,
Perrone and Stein

Characterise Characterise
the category of a category of
Hilbert spaces probability
and coisometries spaces

Not a +-category

m
.dimeglioged .

ac
.
uk https : //mdimeglio. github .

io



The first
All coisometries PROJECTS

characterisation

have a quantum in categorical
interpretation With Heunen

,
Perrone and Stein probability

Characterise Characterise
the category of a category of
Hilbert spaces probability
and coisometries spaces

Not a +-category Not Markov categories

m
.dimeglioged .

ac
.
uk https : //mdimeglio. github .

io


