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fr:Y=2X for each £:X =Y such that | finite set X equipped with a function
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|sometries in Pan are total.

A morphism f is coisometric if £f'=1.
a' )
Let Coisome'l'r3 (C) be the wide @

subca+e30rtj of coisometries in C.

Coisometries in FinPS are determinichic
|sometries in Con are inclusions of “::c (LJ Ix) € {0, 1}

closed subspaces.

Write falso for the uno\erlg ing funchion

2 f y=f
R ‘Pf(glxb{l' "

0 otherwise
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Coisomdrg(C) IS an independence
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S
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~ — =
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IfCisa '|"ca+e<30r3 , then

Coisomdrg(C) IS an independence
cm‘egonj where

l b S

In |some'|'r3( Plnj) .

L captures relative disjointness.

4 < 2
2 —



IfC isa t-category, then

Coisomdrg(C) IS an independence
can‘egonj where

l b S

In Coisometry(FinPS),

[ — Y
Fl . lf
X — A
sF={:3 and
[Px(x)[PY(Lj)

BP{ 3 n g"{gjl) = "R
forall x ¢s{a} and y <t {a}
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independent pullback is a square ql - lf and b =qc.
ER -
;l N l,: Weak independent pullbacks are similar,
but with r=1.
%
such that forall )
ql N ) lé If C isa +-category with dilators,then
e Coisometry(C) has weak independent

4 s’ pull backs.
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Let C be a +-cateqory with dilators. The
Amorphismeiss+rongepic it is left ¢ e a f-category w ilators. [ hen

or+hogonol'|'o the join‘rlg MONIC spans. @ A span in Coisome“'rg(C) s
joinﬂg monic if and onltj ifitis o

A f 'Y dilator in C.
e
el d/,’/ m N\ m (<2) Everg morphism In
.27 g, Coisometry(C) is strong epic.
B — >
9. Y

(€11) Everg span in Coisome“'rg(C)
has a (s{'roncj epic, join'Hsj monic)
factorisation.
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= RE\(D) IS a dogger ca’fegor_‘j with
dilators.

. Coisome*rg (Ret(D) =D

+ Rel(Coisometry (€) =C
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Rel is a poset-enriched +-category. | A morphism £:(X,x)— (Y,u) in
t<g implies F+$9+ Rel . is a relation f:X—=Y
such that (x,y) e f.

A par-h'ql map IS a morphism £ such
that ffr< 1. The tabulator of (X x) — (Y, 5} IS

(X x)&({: (x,v)) —>(Yg)

X =Y elation.
Let £:X be a relation Consider Rel _>Re‘*:

S s,s; & F X = N Y
5 TG T I I
U [ £ {*}xY]
u > Xx (k. %)
Ko MY T | xogsg 0 S0 O g )
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