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Introduction



Examples of categorical axiomatisation

homological algebra  abelian categories

probability theory  Markov categories

differential geometry  tangent categories

logic and set theory  elementary topoi
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Features of categorical axiomatisation

• Shift focus from internal structure to relationships between objects

• Uniform treatment of similar kinds of mathematical structures

• Compare different kinds of mathematical structures
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Long-term goal:
A similar categorical theory of Hilbert spaces
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Background



Hilbert spaces

• Vector spaces with geometry (encoded in an inner product)

kxk =
p
hx|xi cos ✓ =

hx|yi
kxkkyk

and no “gaps” (e.g., Q has “gaps” whereas R does not)

• Model the states of a quantum system

• Every n-dimensional (real) Hilbert space is isomorphic to R
n with

⌦
(x1, x2, . . . , xn)

��(y1, y2, . . . , yn)
↵
= x1y1 + x2y2 + · · ·+ xnyn

• `2(N) =
�
(x1, x2, . . . ) 2 R

N
�� x12 + x22 + · · · <1

 
with

⌦
(x1, x2, . . . )

��(y1, y2, . . . )
↵
= x1y1 + x2y2 + . . .
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Linear contractions

• Linear maps that decrease lengths

kxk > kTxk

• Suffice to describe the evolution of pure quantum states
(include all unitaries and projections)

• Con is the category of Hilbert spaces and linear contractions

• FCon is the full subcategory of finite-dimensional Hilbert spaces
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Adjoints

• Underpin the categorical treatment of Hilbert spaces

• The adjoint of a linear contraction T : X ! Y between Hilbert spaces is
the unique linear contraction T† : Y ! X such that

hTx|yi = hx|T†yi

• The matrix representation of T† : Rm ! R
n is the transpose of the

matrix representation of T : Rn ! R
m
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Dagger categories

• A dagger category is a category equipped with a choice of f † : Y ! X
for each f : X ! Y , such that

1† = 1 (gf )† = f †g† (f †)† = f

• Examples include Con and FCon where the dagger is the adjoint
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Characterisation of Con

Theorem (Heunen, Kornell and van der Schaaf)
A dagger rig category (D,⌦, I,�,O) is equivalent to Con if and only if

1. O is initial,

2. i1 =
�
I ⇠= I� O 1�0��! I� I

�
and i2 =

�
I ⇠= O� I 0�1��! I� I

�
are jointly epic,

...

8. every dagger monomorphism is a kernel,

9. every directed diagram has a colimit.
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Goal for today:
A similar characterisation of FCon
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3

Issues adapting the
characterisation of Con



Need to understand how the
equivalence is constructed
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Scalars and vectors from contractions

f f (1)

Con(R, X)
�
x 2 X

�� kxk 6 1
 

(a 7! a · x) x

7!

⇠=

 [

Con(R,R)
�
a 2 R

�� |a| 6 1
 ⇠=

X =
� 1

a · x
�� x 2 X, kxk 6 1,a 2 R, |a| 6 1,a 6= 0
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The scalar localisation

• The object I corresponds to the 1-dimensional space R

• Construct C from D by “formally inverting” the elements of D(I, I)\{0}

C(I, X) =
�
D(I, X)⇥ D(I, I)\{0}

��
⇠

(x,a) ⇠ (y,b) () xb = ya

• Write x
a for the equivalence class of (x,a)

• C(I, I) is an involutive field

• C(I, X) is a Hermitian space over C(I, I) with hx|yi = x†y.
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Solèr’s theorem

• Gives sufficient conditions for a Hermitian space over an involutive
field to be a Hilbert space over R or C

• To show that C(I, I) is R or C, suffices to construct an object X such
that C(I, X) satisfies these conditions

• C(I, X) must be infinite dimensional

• Known proofs of Solèr’s theorem are not conceptual
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Subgoal:
A conceptual proof that

the field of scalars of C is R or C
that does not use infinite dimensionality
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Limits of sequences from
limits of diagrams



Sequential colimits of contractions

Con has sequential colimits

X1 X2 · · ·

colim Xn

f1 f2

j1
j2

For each x 2 X1,
kxk > kf1xk > kf2f1xk > . . .

kj1xk = inf
n2N
kfn . . . f2f1xk = lim

n!1
kfn . . . f2f1xk
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Sequential colimits of contractions

Con has sequential colimits

X1 X2 · · ·

colim Xn

f1 f2

j1
j2

For each x 2 X1,
kxk > kf1xk > kf2f1xk > . . .

kj1xk = inf
n2N
kfn . . . f2f1xk = lim

n!1
kfn . . . f2f1xk
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Big idea:
Turn these observations about Con
into definitions about D and C.
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Positivity and order

Suppose that D satisfies the axioms for Con, and
let C be the scalar localisation of D

P =
�
a 2 C(I, I)

��a = x†x for some X and some x 2 C(I, X)
 

x†x > y†y () y = fx for some f 2 D(X, Y)
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Infima from sequential colimits

x1†x1 x2†x2 · · ·

x†x = inf
n2N

xn†xn

I

X1 X2 · · ·

colim Xn

> >
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Infima from sequential colimits

x1†x1 x2†x2 · · ·

x†x = inf
n2N

xn†xn

I

X1 X2 · · ·

colim Xn

> >

x1 x2

f1 f2
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Infima from sequential colimits

x1†x1 x2†x2 · · ·

x†x = inf
n2N

xn†xn

I

X1 X2 · · ·

colim Xn

> >

x1 x2

f1 f2

j1 j2
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Infima from sequential colimits

x1†x1 x2†x2 · · ·

x†x = inf
n2N

xn†xn

I

X1 X2 · · ·

colim Xn

> >

x1 x2

f1 f2

j1 j2

x
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Infima from sequential colimits

x1†x1 x2†x2 · · · x†x = inf
n2N

xn†xn

I

X1 X2 · · ·

colim Xn

> >

x1 x2

f1 f2

j1 j2

x

>
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Suprema from cosequential limits

I

Y

lim Xn

X1 X2 · · ·

x1†x1 x2†x2 · · · x†x = sup
n2N

xn†xn y†y

y

g

f1

x1

g1

j1

f2

x2

g2

j2

6 6 6 6

x
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Suprema from cosequential limits

I

Y
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g

f1

x1

g1

j1

f2

x2

g2

j2

6 6 6 6

x
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Suprema from cosequential limits

I

Y
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x1†x1 x2†x2 · · · x†x = sup
n2N

xn†xn y†y
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f1
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6 6 6 6
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Identifying the real or complex numbers

P is a partially ordered strict semifield (field without negatives) that has
suprema (or infima) of bounded increasing (or decreasing) sequences

Theorem (DeMarr, 1967)
Every partially ordered field that has suprema of bounded increasing
sequences is isomorphic to R

The challenging part of our work was bridging the gap
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Finite dimensionality



Characterisation of Con

Theorem (Heunen, Kornell and van der Schaaf)
A dagger rig category (D,⌦, I,�,O) is equivalent to Con if and only if

1. O is initial,
...

8. every dagger monomorphism is a kernel,

9. every directed diagram has a colimit.

`2(N) is the colimit in Con of the sequential diagram

R R
2

R
3 · · ·

x1 7! (x1, 0) (x1, x2) 7! (x1, x2, 0) (x1, x2, x3) 7! (x1, x2, x3, 0)
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Bounded directed diagrams

• Idea: monomorphisms of vector spaces are increasing in dimension

• A diagram is called bounded if it admits a cocone of monomorphisms

• FCon has colimits of bounded sequential diagrams

• Can adapt the construction of suprema to use only these colimits
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Dagger finiteness

• A set S is finite if and only if all injective functions S! S are bijective

• A morphism f : X ! Y is dagger monic if f †f = 1

• An object X is dagger finite if all dagger monomorphisms X ! X are
isomorphisms

• An object in Con is dagger finite if and only if it is finite dimensional
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Characterisation of Con

Theorem (Heunen, Kornell and van der Schaaf)
A dagger rig category (D,⌦, I,�,O) is equivalent to Con if and only if

1. O is initial,

2. i1 =
�
I ⇠= I� O 1�0��! I� I

�
and i2 =

�
I ⇠= O� I 0�1��! I� I

�
are jointly epic,

...

8. every dagger monomorphism is a kernel,

9. every directed diagram has a colimit.
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Characterisation of FCon

Theorem (Di Meglio and Heunen)
A dagger rig category (D,⌦, I,�,O) is equivalent to FCon if and only if

1. O is initial,

2. i1 =
�
I ⇠= I� O 1�0��! I� I

�
and i2 =

�
I ⇠= O� I 0�1��! I� I

�
are jointly epic,

...

8. every dagger monomorphism is a kernel,

9. every bounded sequential diagram has a colimit,

10. every object is dagger finite.
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Conclusion



Related and future work

• Rational dagger categories (similar to abelian categories)

• Real dagger categories and axioms for Hilb and FHilb over R, C and H

(no monoidal product required)

• Axioms for the category of self-dual Hilbert modules over a monotone
complete C*-algebra
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Contact me at m.dimeglio@ed.ac.uk

(1)

(2)

(3)

(4)

(5)

(6)

(7)

The n-Category Café
A group blog on math, physics and philosophy

« Summer Research at the Topos Institute | Main | The Atom of

Kirnberger »

January 29, 2024

Axioms for the Category of Finite-

Dimensional Hilbert Spaces and Linear

Contractions

Posted by Tom Leinster

Guest post by Matthew di Meglio

Recently, my PhD supervisor Chris Heunen and I uploaded a

preprint to arXiv giving an axiomatic characterisation of the

category FConFCon  of finite-dimensional Hilbert spaces and linear

contractions. I thought it might be nice to explain here in a less

formal setting the story of how this article came to be, including

some of the motivation, ideas, and challenges.

1. Background and motivation

The starting point was Chris, Andre and Nesta’s recent

axiomatic characterisation of the category ConCon  of all Hilbert

spaces and linear contractions, which in turn depends on Chris

and Andre’s earlier axiomatic characterisation of the

category HilbHilb  of all Hilbert spaces and all bounded linear maps.

The nice thing about these characterisations is that they do not

refer to analytic notions such as norms, continuity, (metric)

completeness, or the real or complex numbers. Instead, the

axioms are about simple category-theoretic structures and

properties.

The fundamental structure is that of a dagger — an involutive

identity-on-objects contravariant endofunctor (−) † . The dagger

encodes adjoints of linear maps. Following the “way of the

dagger” philosophy, all of the other axioms involve some kind of

compatibility condition with the dagger. For instance, rather

than asking merely for the existence of equalisers, we ask for the

existence of equalisers that are dagger monic, that is, equalisers 

𝑚 such that 𝑚 † 𝑚 = 1; in HilbHilb  and ConCon , the dagger

monomorphisms are precisely the isometries.

Of course, a natural question to ask is where do the analytic

properties come from? In the original article, the heavy lifting is

done by Solèr’s Theorem (See also Prestel’s account). This

theorem gives conditions under which a hermitian space — a

kind of generalised Hilbert space — over an involutive field is

actually a Hilbert space over the field ℝ  or ℂ . Much of the initial

part of the original article is spent constructing such a hermitian

space over the scalar field; the fact that the scalar field is ℝ  or ℂ
then magically pops out. The proof of Solèr’s theorem is rather

unenlightening, using a series of obscure “tricks” to show that

the self-adjoint scalars form a Dedekind-complete Archimedean

ordered field; that they are the real numbers then follows by the

classical characterisation. A more satisfying explanation of why

the scalars are the real or complex numbers would describe

explicitly how to construct something like limits of sequences,

directly from the axioms in a category-theoretic manner.

Another limitation of the Solèr approach is that Solèr’s theorem

may only be applied to infinite-dimensional spaces. In many

applications of Hilbert spaces, such as quantum computing, we

only care about the finite-dimensional spaces. To characterise

categories of finite-dimensional Hilbert spaces, a different proof

strategy is required.

2. Infima from directed colimits

The only axiom for ConCon  of infinitary nature is the one asserting

that all directed diagrams have a colimit. As completeness of

metric spaces is an infinitary condition, the completeness of the

scalar field and the spaces associated to each object must be

encoded in this axiom. This is confirmed by the following

explicit construction of such colimits in ConCon , which features

infima of decreasing sequences in ℝ + = {𝑥 ∈ ℝ ∣ 𝑥 ≥ 0}, as well

as completion of inner-product spaces with respect to their

norm.

For simplicity, consider the directed diagram in ConCon  generated

by the sequence

𝑋1 →𝑓1 𝑋2 →𝑓2 𝑋3 →𝑓3 ⋯
of objects and morphisms; diagrams of this shape are called

sequential whilst diagrams of the opposite shape are called

cosequential. As each of the 𝑓𝑛 are contractions, for each 𝑘 ∈ ℕ
and each 𝑥 ∈ 𝑋𝑘, the sequence

‖𝑥‖, ‖𝑓𝑘(𝑥)‖, ‖𝑓𝑘 + 1𝑓𝑘(𝑥)‖, ‖𝑓𝑘 + 2𝑓𝑘 + 1𝑓𝑘(𝑥)‖,…
of positive reals is decreasing, so it has both an infimum and a

limit, and these coincide. Let ∼  be the binary relation on the

set ⋃ 𝑛 = 1∞ 𝑋𝑛 defined, for all 𝑗, 𝑘 ∈ ℕ , each 𝑥 ∈ 𝑋𝑗 and each 

𝑥′ ∈ 𝑋𝑘, by 𝑥 ∼ 𝑥′ if
inf𝑛 ≥ max(𝑘, 𝑗)‖𝑓𝑛…𝑓𝑘 + 1𝑓𝑘(𝑥′) − 𝑓𝑛…𝑓𝑗 + 1𝑓𝑗(𝑥)‖ = 0 .

Then (⋃ 𝑛 = 1∞ 𝑋𝑛)/ ∼  inherits the structure of an inner-product

space from each of the 𝑋𝑘. In particular, its norm is defined, for

each 𝑘 ∈ ℕ  and each 𝑥 ∈ 𝑋𝑘, by the equation

‖[𝑥]‖ = inf𝑛 ≥ 𝑘‖𝑓𝑛⋯𝑓𝑘 + 1𝑓𝑘(𝑥)‖,
where [𝑥] denotes the equivalence class of 𝑥. The completion 𝑋
of the inner-product space (⋃ 𝑛 = 1∞ 𝑋𝑛)/ ∼ , together with the

maps 𝑋𝑗 → 𝑋 that send each element to its equivalence class,

from a colimit cocone on the diagram.

Our main idea to bypass Solèr’s theorem is to turn this

construction around. Positive scalars are now defined to be the

“norms” of elements of objects. A partial order ⩽  on the

positive scalars is defined so that the scalar corresponding to one

element is at most the scalar corresponding to another exactly

when there is a “contraction” mapping the first element to the

second. Infima of decreasing sequences and suprema of

bounded increasing sequences may then be recovered from the

colimits of the associated sequential and cosequential diagrams

of “contractions”.

3. Characterising the positive reals

The key ingredient that allowed us to proceed with this

approach was our discovery of a beautiful and concise article

by Ralph DeMarr from the 60s. It gives a variant of the classical

characterisation of the real numbers that (1) only assumes a

partial order rather than a total one, and (2) replaces the

assumptions of Archimedianness and Dedekind-completeness

by monotone sequential completeness. In operator algebra, a

partial order is called monotone sequentially complete (or

monotone 𝜎-complete) if every bounded increasing sequence has

a supremum. For a partially ordered field, this is equivalent to

asking that every decreasing sequence of positive elements has

an infimum.

At this point, whilst it is not so relevant for the rest of this blog

post, I feel compelled to highlight DeMarr’s clever use of the

humble geometric series to prove totality of the order. The main

idea is that, for each 𝑢 ≥ 0, either 𝑢 ≤ 1 or 𝑢 ≥ 1 depending on

whether or not the increasing sequence 

𝑠𝑛 = 1 + 𝑢 + 𝑢2 + … + 𝑢𝑛  has a supremum. In turn, this

depends on whether or not the infimum of the decreasing

sequence 1/𝑠𝑛, which always exists, is zero.

The challenge now is that DeMarr’s theorem applies only to

partially ordered fields, whilst the construction of infima of

positive scalars described above is with respect to a partial order

that is defined only for the partially ordered semifield of positive

scalars. Resolving this challenge turned out to be much trickier

than we first thought.

Our initial approach was to adapt DeMarr’s proof to similarly

characterise ℝ +  among partially ordered semifields, and then

show that the partially ordered semifield of positive scalars

satisfies this new characterisation. To guide us, we had Tobias

Fritz’s recent characterisation of ℝ +  among partially ordered

strict semifields (see Theorem 4.5) in terms of Dedekind

completeness and a multiplicative variant of Archimedeanness.

Our goal was to use ideas from DeMarr’s work to replace these

classical assumptions with some condition about the existence

of suprema or infima of monotone sequences. In the absence of

additive inverses, such suprema and infima are not necessarily

compatible with addition. As compatibility with addition was

used in several steps of DeMarr’s approach, it was clear that we

would need to incorporate it into our assumptions.

Multiplicative inversion allows us to pass between considering

suprema of bounded increasing sequences and infima of

decreasing sequences, modulo being careful about zero, which is

not invertible. With this in mind, it is not hard to show that a

partially ordered strict semifield has suprema of bounded

increasing sequences if and only if it has infima of decreasing

sequences. On the other hand, whilst compatibility of such

suprema with addition implies compatibility of such infima with

addition (this is not so obvious in the absence of additive

inverses), the converse is not true.

Indeed, consider the subset 𝕊 = {( 00 )} ∪ (0,∞) × (0,∞) of 

ℝ × ℝ . It is a partially ordered strict semifield with 0 = ( 00 ), 
1 = ( 11 ), pointwise addition and multiplication, and 

( 𝑥𝑦 ) ⩽ ( 𝑢𝑣 ) exactly when 𝑥 ⩽ 𝑦 and 𝑦 ⩽ 𝑣. It is also monotone

sequentially complete, and suprema are compatible with

addition. However, as

infima are not compatible with addition. The issue is decreasing

sequences whose infimum is zero, because zero is not

multiplicatively invertible.

Taking this into account, and cleverly adapting DeMarr’s proof

to avoid using additive inverses, yields the following result,

which is called Proposition 48 in our article.

Proposition 1. A partially ordered strict semifield is isomorphic

to ℝ +  if and only if it is monotone sequentially complete, infima

are compatible with addition, and 1 + 1 ≠ 1.

Assuming that the axioms for ConCon  also imply that infima of

positive scalars are compatible with addition, it follows from

these axioms and Proposition 1 that the semifield of positive

scalars is isomorphic to ℝ + . It is then purely a matter of algebra

to show that the field of all scalars is isomorphic to ℝ  or ℂ .

Unlike the proof of this fact via Solèr’s theorem, our new proof

is informative, explaining how infima of decreasing sequences

of positive scalars arise from sequential colimits.

4. Completeness axioms

This is, however, not the end of the story. You see, aside from the

issue of showing that infima of positive scalars are compatible

with addition (which we will address shortly), the category 

FConFCon  of finite-dimensional Hilbert spaces and linear

contractions does not even have all sequential colimits, let alone

all directed ones. For example, the sequential diagram

ℂ →𝑖1 ℂ2 →𝑖1, 2 ℂ3 H →HH𝑖1, 2, 3 ⋯ ,
whose colimit in ConCon  is the infinite dimensional Hilbert space 

ℓ2(ℕ) of square-summable sequences, does not have a colimit in

FConFCon . The search for an appropriate completeness axiom for 

FConFCon  is a delicate balancing act. We must ask that enough

directed colimits exist that the scalar field is complete, but not so

many that the category also necessarily has infinite-dimensional

objects.

Both of the following candidates for the infinitary axiom seemed

likely to strike this balance.

Axiom A. Every sequential diagram of epimorphisms has a

colimit.

Axiom B. Every cosequential diagram with a cone of

epimorphisms has a limit.

Indeed, both hold in FConFCon  and ConCon , and both are sufficient to

prove that the positive scalars are monotone sequentially

complete. Axiom A is a categorification of the requirement that

every decreasing sequence of positive scalars has an infimum.

Axiom B is a categorification of the requirement that every

bounded increasing sequence of positive scalars has a

supremum. Given that Axiom A is simpler, and, being about

infima rather than suprema, is better matched with Proposition

1, our initial focus was on Axiom A.

Unsuccessful in our attempts to derive compatibility of addition

with infima using only Axiom A and the other axioms for ConCon ,

we decided to allow ourselves one additional conservative

assumption: that each functor 𝑋⊕ − preserves colimits of

sequential diagrams of epimorphisms. By the middle of last year,

we had almost finished a draft of our article based on this

approach. Unfortunately, at this point, I noticed a subtle error in

our compatibility proof, which took several months to resolve.

In the end, we assumed the following more-complicated variant

of Axiom A, which, in our article, is called Axiom 9’.

Axiom A’. Every sequential diagram of epimorphisms has a

colimit, and, for each natural transformation of such diagrams

whose components are dagger monic, the induced morphism

between the colimits is also dagger monic.

5. Finite dimensionality

From here, we thought that it would be easy sailing to the end.

All that remained, really, was to show that the inner-product

space associated to each object is finite dimensional, and Andre

had already sketched out to us how this might work.

An object in a dagger category is called dagger finite if every

dagger monic endomorphism on that object is an isomorphism.

The origin of this notion is operator algebra, although it quite

similar to the notion of Dedekind finiteness from set theory.

An object of ConCon  is dagger finite if and only if it is finite

dimensional. The idea is that every infinite-dimensional Hilbert

space 𝑋 contains a copy of the space ℓ2(ℕ) of square-summable

sequences. The direct sum of the canonical right shift map on

this subspace with the identity map on its orthogonal

complement is a dagger monic endomorphism on 𝑋 that is not

an isomorphism. Andre adapted this proof to the abstract

axiomatic setting, using sequential colimits to construct abstract

analogues of the copy of ℓ2(ℕ) and its right shift map.

Unfortunately, the colimits required to make this proof work are

of sequential diagrams of dagger monomorphisms, whilst the

axiom that we had assumed was about sequential diagrams of

epimorphisms. The equivalence between the category of dagger

subobjects of a fixed object and dagger quotients of that object,

given by taking dagger kernels and dagger cokernels, presented

a possible workaround. For any object 𝑋, through this

equivalence, the category of dagger subobjects of 𝑋 has

sequential colimits. If 𝑋 is dagger infinite, then we may

construct a dagger subobject of 𝑋 corresponding to ℓ2(ℕ) using

such a sequential colimit. Unfortunately, as the abstract

analogue of right shift map is not a morphism in this category of

dagger subobjects, we cannot construct it using the universal

property of this sequential colimit.

Ultimately, our approach using Axiom A’ and Proposition 1 was

abandoned, and the parts of it that did work were moved to an

appendix.

6. Accounting for the field embedding

Axiom B, which is about suprema rather than infima, is not well

matched with Proposition 1. If we assume Axiom B, then we

need to somehow exclude the partially ordered strict semifields,

like 𝕊 , that have badly behaved decreasing sequences with

infimum zero. What should have been obvious in hindsight is

that, whilst our semifield of interest — the positive scalars —

embeds in a field, the problematic semifield 𝕊  does not. If it did,

then

so either ( 21 ) = ( 11 ) or ( 21 ) = ( 22 ), which is a contradiction.

This trick of forming a quadratic equation to show that two

elements are equal actually forms the basis of the following

result, called Lemma 35 in the article.

Lemma 2. In a partially ordered strict semifield that is monotone

sequentially complete and embeds in a field, if suprema are

compatible with addition, then inf(𝑎 + 𝑢𝑛) = 𝑎 for all non-zero 𝑎
and all 𝑢 < 1.

Noting that inf𝑢𝑛 = 0 when 𝑢 < 1, we see that this extra

assumption of a field embedding allowed us to deduce that

addition is compatible with at least one general class of

decreasing sequences with infimum zero.

We actually knew all along that we could partially order the field

of self-adjoint scalars by 𝑎 ≼ 𝑏 if and only if 𝑏 − 𝑎 is a positive

scalar. To apply DeMarr’s theorem to the self-adjoint scalars, this

partial order must be monotone sequentially complete. As

discussed earlier, we also knew how to show that the

“contraction” partial order ⩽  on the positive scalars is montone

sequentially complete. The difficulty is that, a priori, the partial

order ⩽  merely refines the partial order ≼ . When we started

this project, we had no idea how to lift monotone sequential

completeness from ⩽  to ≼ , so we quickly dismissed this idea.

However, now armed with a better understanding of infima and

suprema in partially ordered semifields, and Lemma 2 in

particular, we could finally make headway.

With a few more tricks, including a clever use of completing the

square, we arrived at the following proposition, called

Proposition 36 in our article.

Proposition 3. Let 𝐶 be an involutive field with a partially

ordered strict subsemifield (𝑃, ⩽ ) whose elements are all self-

adjoint and include 𝑎 † 𝑎 for all 𝑎 ∈ 𝐶. If 𝑃 is monotone

sequentially complete and its suprema are compatible with

addition, then there is an isomorphism of 𝐶 with ℝ  or ℂ  that

maps 𝑃 onto ℝ + .

All that remains, is to show that suprema are compatible with

addition, and that the inner-product space associated to each

object is finite dimensional. For compatibility, unlike when we

assumed Axiom A, it is actually enough that each functor 𝑋⊕ −
preserve limits of cosequential diagrams with a cone of

epimorphisms. Actually, very recently, I stumbled on a new

characterisation of dagger biproducts and a few more tricks that

enabled us to finally prove this fact from the other axioms. For

finite-dimensionality, Andre’s proof already essentially assumed

the dual of Axiom B, and so works unchanged.

7. Conclusion

It’s quite a miracle that everything worked out so well, and

without concession of ugly assumptions. Our faith that the

scalars being ℝ  or ℂ  should be provable in a manner that works

equally well with the axioms for ConCon  as for FConFCon  certainly

guided us in the right direction. However, there were many

points at which we almost forfeited this goal to accept a subpar

final result.

Unfortunately, in published mathematics, incentives for clarity,

conciseness, and positive results leave little space to tell stories

of how ideas and results came to be, even when these stories are

interesting and insightful. I hope that for our article, this blog

post conveys at least some part of the emotional rollercoaster,

the twists and turns and failed attempts, that got us to the end.
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DAGGER CATEGORIES AND THE COMPLEX NUMBERS:

AXIOMS FOR THE CATEGORY OF FINITE-DIMENSIONAL

HILBERT SPACES AND LINEAR CONTRACTIONS

MATTHEW DI MEGLIO AND CHRIS HEUNEN

Abstract. We characterise the category of finite-dimensional Hilbert spaces

and linear contractions using simple category-theoretic axioms that do not

refer to norms, continuity, dimension, or real numbers. Our proof directly

relates limits in category theory to limits in analysis, using a new variant of

the classical characterisation of the real numbers instead of Solèr’s theorem.1. Introduction

The category Hilb of Hilbert spaces and bounded linear maps and the category

Con of Hilbert spaces and linear contractions were both recently characterised in

terms of simple category-theoretic structures and properties [6, 7]. For example,

the structure of a dagger encodes adjoints of linear maps. Remarkably, none of

these properties refer to analytic notions such as norms, continuity, dimension, real

numbers, convexity or probability. For mathematicians, these characterisations

give a surprisingly new perspective on Hilbert spaces—a well-studied structure in

functional analysis. For theoretical physicists, they provide further justification for

the category-theoretic approach to quantum mechanics [8].

In quantum computing and quantum information theory, the Hilbert spaces

of interest are typically finite dimensional. Counterintuitively, finding axioms for

categories with only finite-dimensional Hilbert spaces is more challenging than doing

so for categories with all Hilbert spaces. The issue is that the natural category-

theoretic way to encode analytic completeness of the scalar field is in terms of

directed colimits, but the existence of too many of these colimits also implies the

existence of objects corresponding to infinite-dimensional spaces. Until now, the

only known way to prove that the scalars are the real or complex numbers was to

construct such an infinite-dimensional object and then apply Solèr’s theorem [16].

Without such infinite-dimensional objects, a di↵erent approach is necessary.

An obvious way to bypass Solèr’s theorem is to directly appeal to the classical

characterisation of the reals as the unique Dedekind-complete Archimedean ordered

field, but it is unclear how to prove that the scalars have these specific properties.

DeMarr showed that the reals are also the unique partially ordered field with suprema

of bounded increasing sequences [1]. Defining and ordering positive scalars based on
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Bonus



All axioms for FCon

1. O is initial,

2. i1 =
�
I ⇠= I� O 1�0��! I� I

�
and i2 =

�
I ⇠= O� I 0�1��! I� I

�
are jointly epic,

3. i1†d 6= 0 6= i2†d for some d : I! I� I,

4. I is dagger simple,

5. I is a monoidal separator,

22



All axioms for FCon

6. if x : A! X and y : A! Y are epic, then x†x = y†y if and only if y = fx
for some isomorphism f : X ! Y ,

7. every parallel pair has a dagger equaliser,

8. every dagger monomorphism is a kernel,

9. every bounded sequential diagram has a colimit,

10. every object is dagger finite.
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Dagger finiteness

• An object X is called dagger finite when, for each f : X ! X,

f †f = 1 () ff † = 1

• Finite-dimensional implies dagger finite by rank-nullity

• The right-shift map R : `2(N)! `2(N) satisfies

R(x1, x2, . . . ) = (0, x1, . . . ) and R†(x1, x2, . . . ) = (x2, x3, . . . )

so R†R = 1 and RR† 6= 1; hence `2(N) is not dagger finite

• `2(N) embeds isometrically in all infinite-dimensional Hilbert spaces,
so no infinite-dimensional Hilbert space is dagger finite
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