AXIOMS FOR THE CATEGORY OF FINITE-DIMENSIONAL HILBERT SPACES AND LINEAR CONTRACTIONS

Matthew Di Meglio and Chris Heunen Atlantic Category Theory Seminar, February 2024

homological algebra → abelian categories probability theory → Markov categories differential geometry → tangent categories logic and set theory → elementary topoi

· Shift focus from internal structure to relationships between objects

• Uniform treatment of similar kinds of mathematical structures

Compare different kinds of mathematical structures

LONG-TERM GOAL: A similar categorical theory of Hilbert spaces

HILBERT SPACES

• Vector spaces with geometry (encoded in an *inner product*)

$$\|x\| = \sqrt{\langle x|x \rangle}$$
 $\cos \theta = \frac{\langle x|y \rangle}{\|x\|\|y\|}$

and no "gaps" (e.g., \mathbb{Q} has "gaps" whereas \mathbb{R} does not)

- Model the states of a quantum system
- Every *n*-dimensional (real) Hilbert space is isomorphic to \mathbb{R}^n with

$$\langle (x_1, x_2, \ldots, x_n) | (y_1, y_2, \ldots, y_n) \rangle = x_1 y_1 + x_2 y_2 + \cdots + x_n y_n$$

•
$$\ell_2(\mathbb{N}) = \{(x_1, x_2, \dots) \in \mathbb{R}^{\mathbb{N}} | x_1^2 + x_2^2 + \dots < \infty\}$$
 with
 $\langle (x_1, x_2, \dots) | (y_1, y_2, \dots) \rangle = x_1 y_1 + x_2 y_2 + \dots$

LINEAR CONTRACTIONS

• Linear maps that decrease lengths

 $\|x\| \ge \|Tx\|$

• Suffice to describe the evolution of pure quantum states (include all unitaries and projections)

• **Con** is the category of Hilbert spaces and linear contractions

• FCon is the full subcategory of finite-dimensional Hilbert spaces

• Underpin the categorical treatment of Hilbert spaces

• The *adjoint* of a linear contraction $T: X \to Y$ between Hilbert spaces is the unique linear contraction $T^{\dagger}: Y \to X$ such that

$$\langle Tx|y\rangle = \langle x|T^{\dagger}y\rangle$$

• The matrix representation of $T^{\dagger} : \mathbb{R}^m \to \mathbb{R}^n$ is the transpose of the matrix representation of $T : \mathbb{R}^n \to \mathbb{R}^m$

• A *dagger category* is a category equipped with a choice of $f^{\dagger}: Y \to X$ for each $f: X \to Y$, such that

$$1^{\dagger} = 1$$
 $(gf)^{\dagger} = f^{\dagger}g^{\dagger}$ $(f^{\dagger})^{\dagger} = f$

• Examples include Con and FCon where the dagger is the adjoint

Theorem (Heunen, Kornell and van der Schaaf)

A dagger rig category $(D, \otimes, I, \oplus, O)$ is equivalent to **Con** if and only if

1. O is initial,

÷

2. $i_1 = (I \cong I \oplus O \xrightarrow{1 \oplus 0} I \oplus I)$ and $i_2 = (I \cong O \oplus I \xrightarrow{0 \oplus 1} I \oplus I)$ are jointly epic,

8. every dagger monomorphism is a kernel,

9. every directed diagram has a colimit.

GOAL FOR TODAY: A similar characterisation of FCon

ISSUES ADAPTING THE CHARACTERISATION OF CON

Need to understand how the equivalence is constructed

 $f \mapsto f(1)$ Con(\mathbb{R}, X) \cong { $x \in X \mid ||x|| \leq 1$ }

 $(a \mapsto a \cdot x) \quad \leftarrow \quad x$

 $\mathsf{Con}(\mathbb{R},\mathbb{R}) \cong \{a \in \mathbb{R} \mid |a| \leq 1\}$

 $X = \left\{ \frac{1}{a} \cdot x \mid x \in X, \|x\| \leq 1, a \in \mathbb{R}, |a| \leq 1, a \neq 0 \right\}$

THE SCALAR LOCALISATION

- The object I corresponds to the 1-dimensional space ${\mathbb R}$
- Construct **C** from **D** by "formally inverting" the elements of $D(I, I) \setminus \{0\}$

 $\mathsf{C}(l,X) = \big(\mathsf{D}(l,X) \times \mathsf{D}(l,l) \setminus \{0\}\big) \big/ \!\!\sim$

$$(x,a) \sim (y,b) \iff xb = ya$$

- Write $\frac{x}{a}$ for the equivalence class of (x, a)
- C(I, I) is an involutive field
- C(I,X) is a *Hermitian space* over C(I,I) with $\langle x|y \rangle = x^{\dagger}y$.

- Gives sufficient conditions for a Hermitian space over an involutive field to be a Hilbert space over $\mathbb R$ or $\mathbb C$
- To show that C(I, I) is \mathbb{R} or \mathbb{C} , suffices to construct an object X such that C(I, X) satisfies these conditions
- C(I, X) must be infinite dimensional
- Known proofs of Solèr's theorem are not conceptual

SUBGOAL: A conceptual proof that the field of scalars of C is \mathbb{R} or \mathbb{C} that does not use infinite dimensionality

LIMITS OF SEQUENCES FROM

LIMITS OF DIAGRAMS

SEQUENTIAL COLIMITS OF CONTRACTIONS

Con has sequential colimits

$$X_1 \xrightarrow{f_1} X_2 \xrightarrow{f_2} \cdots$$

SEQUENTIAL COLIMITS OF CONTRACTIONS

Con has sequential colimits

For each $x \in X_1$,

 $||x|| \ge ||f_1x|| \ge ||f_2f_1x|| \ge \dots$

$$\|j_1 x\| = \inf_{n \in \mathbb{N}} \|f_n \dots f_2 f_1 x\| = \lim_{n \to \infty} \|f_n \dots f_2 f_1 x\|$$

BIG IDEA: Turn these observations about Con into definitions about D and C.

Suppose that D satisfies the axioms for Con, and let C be the scalar localisation of D

$$P = \{a \in C(I, I) \mid a = x^{\dagger}x \text{ for some } X \text{ and some } x \in C(I, X)\}$$

 $x^{\dagger}x \ge y^{\dagger}y \quad \iff \quad y = fx \text{ for some } f \in \mathbf{D}(X, Y)$

 $x_1^{\dagger}x_1 \ge x_2^{\dagger}x_2 \ge \cdots$

$$x_1^{\dagger}x_1 \geq x_2^{\dagger}x_2 \geq \cdots$$

$$x_1^{\dagger}x_1 \geq x_2^{\dagger}x_2 \geq \cdots$$

$$x_1^{\dagger}x_1 \geq x_2^{\dagger}x_2 \geq \cdots$$

 $x_1^{\dagger}x_1 \leqslant x_2^{\dagger}x_2 \leqslant \cdots$

 $\leq y^{\dagger}y$

14

14

14

P is a partially ordered *strict semifield* (field without negatives) that has suprema (or infima) of bounded increasing (or decreasing) sequences

Theorem (DeMarr, 1967) Every partially ordered *field* that has suprema of bounded increasing sequences is isomorphic to ℝ

The challenging part of our work was bridging the gap

FINITE DIMENSIONALITY

CHARACTERISATION OF CON

Theorem (Heunen, Kornell and van der Schaaf)

- A dagger rig category $(D, \otimes, I, \oplus, O)$ is equivalent to **Con** if and only if
 - 1. O is initial,

:

- 8. every dagger monomorphism is a kernel,
- 9. every directed diagram has a colimit.

 $\ell_2(\mathbb{N})$ is the colimit in **Con** of the sequential diagram

$$\mathbb{R} \xrightarrow{x_1 \mapsto (x_1, 0)} \mathbb{R}^2 \xrightarrow{(x_1, x_2) \mapsto (x_1, x_2, 0)} \mathbb{R}^3 \xrightarrow{(x_1, x_2, x_3) \mapsto (x_1, x_2, x_3, 0)} \cdots$$

- IDEA: monomorphisms of vector spaces are increasing in dimension
- A diagram is called *bounded* if it admits a cocone of monomorphisms
- FCon has colimits of bounded sequential diagrams
- Can adapt the construction of suprema to use only these colimits

- + A set S is finite if and only if all injective functions $\mathsf{S}\to\mathsf{S}$ are bijective
- A morphism $f: X \to Y$ is **dagger monic** if $f^{\dagger}f = 1$
- An object X is **dagger finite** if all dagger monomorphisms $X \rightarrow X$ are isomorphisms
- An object in **Con** is dagger finite if and only if it is finite dimensional

Theorem (Heunen, Kornell and van der Schaaf)

A dagger rig category (D, $\otimes, {\it I}, \oplus, {\it O})$ is equivalent to Con if and only if

1. O is initial,

÷

2. $i_1 = (I \cong I \oplus O \xrightarrow{1 \oplus 0} I \oplus I)$ and $i_2 = (I \cong O \oplus I \xrightarrow{0 \oplus 1} I \oplus I)$ are jointly epic,

8. every dagger monomorphism is a kernel,

9. every directed diagram has a colimit.

Theorem (Di Meglio and Heunen)

A dagger rig category $(D, \otimes, I, \oplus, O)$ is equivalent to FCon if and only if

1. O is initial,

:

2.
$$i_1 = (I \cong I \oplus O \xrightarrow{1 \oplus 0} I \oplus I)$$
 and $i_2 = (I \cong O \oplus I \xrightarrow{0 \oplus 1} I \oplus I)$ are jointly epic,

- 8. every dagger monomorphism is a kernel,
- 9. every bounded sequential diagram has a colimit,
- 10. every object is dagger finite.

• Rational dagger categories (similar to abelian categories)

• Real dagger categories and axioms for **Hilb** and **FHilb** over ℝ, ℂ and ℍ (no monoidal product required)

• Axioms for the category of self-dual Hilbert modules over a monotone complete C*-algebra

Contact me at m.dimeglio@ed.ac.uk

«Summer Research at the Topos Institute | Main | The Atom of Kirnberger »

🕒 January 29, 2024

Axioms for the Category of Finite-Dimensional Hilbert Spaces and Linear

Contractions

Posted by Tom Leinster

Guest post by Matthew di Meglio

Recently, my PhD supervisor Chris Heunen and I uploaded a preprint to arXiv giving an axiomatic characterisation of the users **ECon** of finite-dimensional Hilbert spaces and linear provide the space of the spac

1. O is initial,

2. $i_1 = (I \cong I \oplus O \xrightarrow{1 \oplus 0} I \oplus I)$ and $i_2 = (I \cong O \oplus I \xrightarrow{0 \oplus 1} I \oplus I)$ are jointly epic,

3. $i_1^{\dagger}d \neq 0 \neq i_2^{\dagger}d$ for some $d: I \rightarrow I \oplus I$,

4. *I* is dagger simple,

5. *I* is a monoidal separator,

6. if $x: A \to X$ and $y: A \to Y$ are epic, then $x^{\dagger}x = y^{\dagger}y$ if and only if y = fx for some isomorphism $f: X \to Y$,

- 7. every parallel pair has a dagger equaliser,
- 8. every dagger monomorphism is a kernel,
- 9. every bounded sequential diagram has a colimit,
- 10. every object is dagger finite.

DAGGER FINITENESS

• An object X is called *dagger finite* when, for each $f: X \to X$,

$$f^{\dagger}f = 1 \qquad \Longleftrightarrow \qquad ff^{\dagger} = 1$$

- Finite-dimensional implies dagger finite by rank-nullity
- The right-shift map $R\colon \ell_2(\mathbb{N}) o \ell_2(\mathbb{N})$ satisfies

 $R(x_1, x_2, \dots) = (0, x_1, \dots)$ and $R^{\dagger}(x_1, x_2, \dots) = (x_2, x_3, \dots)$ so $R^{\dagger}R = 1$ and $RR^{\dagger} \neq 1$; hence $\ell_2(\mathbb{N})$ is not dagger finite

• $\ell_2(\mathbb{N})$ embeds isometrically in all infinite-dimensional Hilbert spaces, so no infinite-dimensional Hilbert space is dagger finite