ENRICHED BISIMULATIONS

MATTHEW DIMEGLIO (Joint work with Bryce Clarke)

APPLIED CATEGORY THEORY 2023

LABELLED TRANSITION SYSTEMS Used to describe the possible behaviours of discrete processes.

S set of states

 $\frac{\alpha}{1} \leq S \times S$ transition relation for each $\alpha \in A$

STRONG BISIMULATION

(S and T are A-labelled transition systems)

Functional Strong Bisimulations* A function $f:S \rightarrow T$ whose graph is a strong bisimulation.

3

(S, T and X are A-labelled transition systems) *Also called abstraction homomorphisms and pure morphisms

\mathcal{V}	\mathcal{V} -ENRICHED CATEGORY	V-ENRICHED ASYMMETRIC LENS
Set	category	delta lens
wSet	weighted category	weighted lens
([0,∞],≽)	metric space	weak submetry

 ${\cal V}$ is a distributive monoidal category

A-labelled transition systems = P(A)-enriched graphs

A-labelled transition systems = P(A)-enriched graphs

functional strong bisimulations = asymmetric lenses

A function $f:S \rightarrow T$ such that (1) $s \xrightarrow{\propto} s^{*}$ implies $fs \xrightarrow{\propto} fs^{*}$, (2) $fs \xrightarrow{\propto} t^{*}$ implies exists s^{*} with $s \xrightarrow{\propto} s^{*}$ and $fs^{*} = t^{*}$. A function $f: S_{ob} \rightarrow T_{ob}$ such that (1) $S(s,s') \subseteq T(fs,fs')$, (2) $T(fs,t') \subseteq \bigcup_{s' \in f''\{t'\}} S(s,s')$.

A-labelled transition systems = P(A)-enriched graphs

functional strong bisimulations = asymmetric lenses

\mathcal{V} -ENRICHED BISIMULATION A relation $R \subseteq \mathcal{A}_{ob} \times \mathcal{B}_{ob}$ such that

$A(a,a') \leq \bigvee_{b': (a',b') \in \mathbb{R}} B(b,b')$ and $\bigvee_{a': (a',b') \in \mathbb{R}} A(a,a') \leq B(b,b')$.

$\begin{array}{l} \textbf{These do compose:} \\ (a,b) \in \mathbb{R} \subseteq \mathcal{A}_{ob} \times \mathbb{B}_{ob} & (b,c) \in \mathbb{S} \subseteq \mathbb{B}_{ob} \times \mathbb{C}_{ob} \\ \mathcal{A}(a,a') \leq \bigvee_{b': (a',b') \in \mathbb{R}} \mathbb{B}(b,b') \leq \bigvee_{b': (a',b') \in \mathbb{R}} \bigvee_{c': (b',c') \in \mathbb{S}} \mathbb{C}(c,c') \leq \bigvee_{c': (a',c') \in \mathbb{R}; \mathbb{S}} \mathbb{C}(c,c') \end{array}$

For graphs: \mathcal{V} is a suplattice

For categories: \mathcal{V} is a quantale

6

strong bisimulation of $= \frac{\text{bisimulation of}}{P(A)-\text{enriched graphs}}$

weak bisimulation of _____ bisimulation of $A^{u}{\tau}$ -labelled transition systems $P(A^{*})$ -enriched categories

bisimulation of ______ bisimulation of Kripke frames ______ 2-enriched graphs

PROPOSITION:

 $(a,b) \in \operatorname{Im}\langle f_{1},f_{2}\rangle \iff f_{1}x = a \text{ and } f_{2}x = b \text{ for some } x \in \mathfrak{X}_{ab}$ $\mathcal{A}(a,a') = \mathcal{A}(f_{1}x,a') \leqslant \bigvee_{x' \in f_{1}^{-1}a'} \mathfrak{X}(x,x') \leqslant \bigvee_{x' \in f_{1}^{-1}a'} \mathcal{B}(f_{2}x,f_{2}x') = \bigvee_{b' : (a',b') \atop \in \operatorname{Im}\langle f_{1}f_{2} \rangle} \mathcal{B}(b,b')$

PROPOSITION:

 $\begin{array}{cccc} \text{spans of \mathcal{V}-enriched} \\ \text{asymmetric lenses} \\ \mathcal{A}_{ob} \xleftarrow{f_1} \mathcal{X}_{ob} \xrightarrow{f_2} \mathcal{B}_{ob} \\ \mathcal{A}_{ob} \xleftarrow{f_1} \mathcal{X}_{ob} \xrightarrow{f_2} \mathcal{B}_{ob} \\ \mathcal{A}_{ob} \xleftarrow{f_1} \mathcal{R}_{ob} \xrightarrow{f_2} \mathcal{B}_{ob} \\ \mathcal{R}_{ob} \xleftarrow{\pi_1} \mathcal{R}_{ob} \xrightarrow{\pi_2} \mathcal{R}_{ob} \\ \mathcal{R}_{ob} \xrightarrow{\pi_1} \mathcal{R}_{ob} \xrightarrow{\pi_2} \mathcal{R}_{ob} \\ \mathcal{R}_{ob} \xrightarrow{\pi_1} \mathcal{R}_{ob} \xrightarrow{\pi_2} \mathcal{R}_{ob} \\ \mathcal{R}_{ob} \\ \mathcal{R}_{ob} \xrightarrow{\pi_2} \mathcal{R}_{ob} \\ \mathcal{R}_{ob}$

 $\mathcal{R}(\mathbf{r},\mathbf{r}') = \mathcal{A}(\pi_1\mathbf{r},\pi_1\mathbf{r}') \wedge \mathcal{B}(\pi_2\mathbf{r},\pi_2\mathbf{r}') \leq \mathcal{A}(\pi_1\mathbf{r},\pi_1\mathbf{r}')$

 $\mathcal{A}(\pi_{1}\mathbf{r},a') = \mathcal{A}(\pi_{1}\mathbf{r},a') \wedge \mathcal{A}(\pi_{1}\mathbf{r},a') \leqslant \mathcal{A}(\pi_{1}\mathbf{r},a') \wedge \bigvee_{b':(a',b')\in \mathbb{R}} \mathcal{B}(\pi_{2}\mathbf{r},b') = \bigvee_{b':(a',b')\in \mathbb{R}} \mathcal{A}(\pi_{1}\mathbf{r},a') \wedge \mathcal{B}(\pi_{2}\mathbf{r},b') = \bigvee_{r'\in\pi_{1}r'a'} \mathcal{R}(\mathbf{r},\mathbf{r})$

PROPOSITION:

spans of V-enriched split surjection V-enriched bisimulations asymmetric lenses $A_{ob} \xleftarrow{f_1} X_{ob} \xrightarrow{f_2} B_{ob}$ $\operatorname{Im}\langle f_1, f_2 \rangle$ \mapsto $A_{ob} \xleftarrow{\pi_1} R_{ob} \xrightarrow{\pi_2} B_{ob}$ $R \subseteq A_{ob} \times B_{ob}$ $\mathcal{R}_{ob} = \mathcal{R} \quad \mathcal{R}((\overset{\alpha}{b}), (\overset{\alpha}{b'})) = \mathcal{A}(a, a') \wedge \mathcal{B}(b, b')$ local reflection* \mathcal{V} -LensSpan(\mathcal{A}, \mathcal{B}) $\longrightarrow \mathcal{V}$ -Bisim(\mathcal{A}, \mathcal{B}) bicategory when V is locally completely distributive *See Walker's PhD thesis

Enriched bisimulations

- · generalise several common kinds of bisimulation
- are equivalence classes of spans of enriched asymmetric lenses
 are only defined for thin bases of enrichment

QUESTIONS

• What are the bisimulations for other common quantales? • What other parts of bisimulation theory generalise?

https://mdimeglio.github.io https://bryceclarke.github.io