Universality of asymmetric lens proxy pullbacks

THE UNIVERSITY of EDINBURGH

Applied Category Theory 2022
Matthew Di Meglio

With	Index	Kind	Message
Ava	0	sent	Hi
	1	received	Hey
	2	sent	What's new?
	3	draft	I'm g
Cam	0	received	Hey

Asymmetric delta lens

Asymmetric delta lens

Source
S
F
\downarrow
V
View

Asymmetric delta lens

Lens spans model bidirectional transformations

Lens spans model bidirectional transformations

Lens spans model bidirectional transformations

Lens spans model bidirectional transformations

Lens spans model bidirectional transformations

Lens spans model bidirectional transformations

Lens spans model bidirectional transformations

\Perp
\downarrow

Span composition by pullback?

Span composition by pullback?

Span composition by pullback?

Span composition by pullback?

Span composition by pullback?

Span composition by pullback?

Span composition by pullback?

(A, B)

A

Span composition by pullback?

(A, B)

Span composition by pullback?

$$
(A, B) \xrightarrow{(?, ?)} \text {. }
$$

Span composition by pullback?

$$
(A, B) \xrightarrow{(a, ?)} \text {. }
$$

Span composition by pullback?

$$
(A, B) \xrightarrow{(a, ?)} \text {. }
$$

$\mathrm{FA} \longrightarrow \underset{\mathrm{Fa}}{ }$.

Span composition by pullback?

$$
(A, B) \xrightarrow{(a, ?)}
$$

$$
F A \longrightarrow{ }_{F a}
$$

Span composition by pullback?

$$
(A, B) \xrightarrow{\left(a, C^{B} F a\right)} \cdot
$$

$$
F A \longrightarrow{ }_{F a}
$$

Span composition by pullback?

$$
(A, B) \xrightarrow{\left(a, a^{B} F a\right)} \cdot
$$

$$
F A \longrightarrow{ }_{F a}
$$

proxy pullback Span composition by pullback?

$$
(A, B) \xrightarrow{\left(a, C^{B} F a\right)} \cdot
$$

$$
F A \longrightarrow \stackrel{F a}{ }
$$

Necessary conditions

If L exists then

Necessary conditions

If L exists then
I. (K, J) is compatible with (F, G)

Necessary conditions

If L exists then
I. (K, J) is compatible with (F, G)
2. (K, J) is independent

Compatibility

Compatibility

Compatibility

Compatibility

KD

FKD

Compatibility

FKD

Compatibility

$$
D \xrightarrow{K_{a}^{D}}
$$

FKD

Compatibility

$$
\xrightarrow{R_{0}} \text {. }
$$

FKD

Compatibility

$$
D \xrightarrow{K_{a}^{D}}
$$

FKD $\xrightarrow[\mathrm{Fa}]{ }$ •

Compatibility

$$
D \xrightarrow{K_{a}^{D}}
$$

FKD $\xrightarrow[\mathrm{Fa}]{ }$ •

Compatibility

$$
D \xrightarrow{K_{a}^{D}}
$$

FKD $\xrightarrow[\mathrm{Fa}]{ }$ •

Independence

Independence

Independence

Independence

Independence

Independence

Independence

Independence

Independence

Independence

$$
\xrightarrow[D]{K^{D} a_{1}} D_{1} \xrightarrow{J^{D_{1}} b_{2}} D_{2} \xrightarrow{K^{D_{2}} a_{3}} D_{3}
$$

$$
\xrightarrow{J K^{D} a_{1}} B_{1} \xrightarrow{b_{2}} B_{2} \xrightarrow{J K^{D_{2}} a_{3}} B_{3}
$$

Independence

$$
\xrightarrow[D]{K^{D} a_{1}} D_{1} \xrightarrow{J^{D_{1}} b_{2}} D_{2} \xrightarrow{K^{D_{2}} a_{3}} D_{3} \cdots D_{n}
$$

$$
\xrightarrow{J K^{D} a_{1}} B_{1} \xrightarrow{b_{2}} B_{2} \xrightarrow{J K^{D_{2}} a_{3}} B_{3} \cdots B_{n}
$$

Independence

Independence

Independence

Sufficient conditions

Sufficient conditions

Conclusion

- Sync-minimal lens proxy pullbacks are universal amongst the independent and compatible lens spans
- This characterisation allowed a better understanding of when lens proxy pullbacks are real pullbacks
- Approach was inspired by Böhm and Simpson's treatment of pullback proxies in other categories

