Coequalisers under the lens

Matthew Di Meglio

Applied Category Theory 2021

What is a lens?

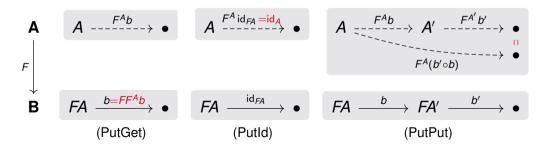
	Example	Model
system	database, view	category
state	records in each table	object
transition	insert record, update record, delete record	morphism
synchronisation protocol	solution to view-update problem	(delta) lens

1

What is a lens?

A *lens* $F: A \rightarrow B$ consists of

- a *get functor F*: $A \rightarrow B$, and
- for all A in A and b: $FA \rightarrow \bullet$ in B, a *lift* F^Ab : $A \rightarrow \bullet$ in A of b to A, such that



The category of lenses

- Small categories and lenses form a category Lens
- Chollet et al. initiated a study of the categorical properties of Lens
- No reason to expect Lens would have nice properties but it does
- Functor *U*: Lens → Cat sending a lens to its get functor helpful
- Proved Chollet et al.'s conjectures about monos and epis
- Characterisation of epis enabled a start on studying coequalisers

Epis in Lens are nicer than epis in Cat

e is *epic* if it is right cancellable ($h_1e = h_2e$ implies $h_1 = h_2$)

Remark In Cat epic \implies surjective on objects epic \implies surjective on morphisms $\mathsf{epic} \iff \begin{cases} \mathsf{surjective} \; \mathsf{on} \; \mathsf{objects} \\ + \\ \mathsf{surjective} \; \mathsf{on} \; \mathsf{morphisms} \end{cases}$

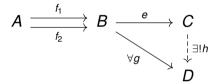
Proposition

In Lens

epic ⇔ surjective on objects ⇔ surjective on morphisms

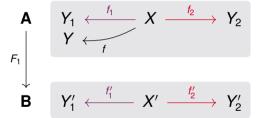
Coequalisers

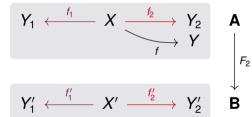
e **coequalises** f_1 and f_2 if it is their universal **cofork**



- Cat has all coequalisers, but they aren't usually nice to describe
- Lens doesn't have all coequalisers, but some are nicer to describe
- Coequalisers are always epic

Not all coequalisers in Lens exist





Coequalisers in Lens above coequalisers in Cat

Lemma

The get functor of every epic lens coequalises its kernel pair in Cat.

Theorem

Every epic lens coequalises its imported kernel pair in **Lens**.

Corollary

The lenses left orthogonal to all monic lenses are the epic lenses.

Lemma

A lens is monic if and only if it is injective on objects.

Theorem

U creates pushouts of monic lenses with discrete opfibrations.

Corollary

Every monic lens equalises its cokernel pair in **Lens**.

Conclusion

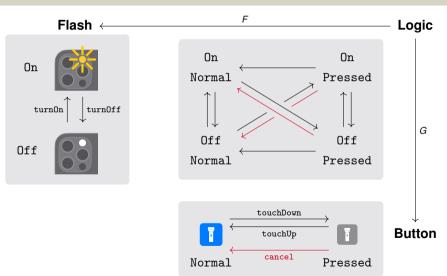
Summary

- Epis in Lens are nicer than those in Cat
- Epic lens characterisation enabled start studying coequalisers in Lens
- **Lens** doesn't have all coequalisers, nor does *U* reflect/preserve them
- There are classes of coequalisers which are preserved/created by U

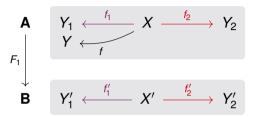
Future work

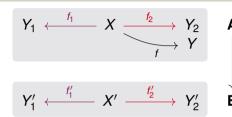
- Completely characterise pullbacks and coequalisers in Lens
- Study category of symmetric lenses via properties of Lens
- General theory of categories of morphisms with extra structure?

Toy example

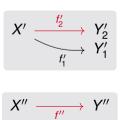


Lens doesn't have all coequalisers

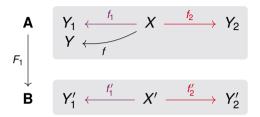


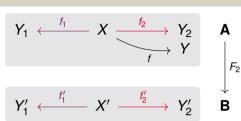


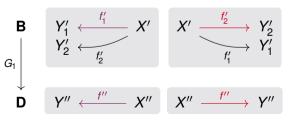
- Assume F_1 and F_2 have a coequaliser $E : \mathbf{B} \to \mathbf{C}$
- $Ef'_1 = Ef'_2$ as E coforks F_1 and F_2
- Let $H : \mathbf{C} \to \mathbf{D}$ be the unique lens with $G = H \circ E$
- $GX' \neq GY'_1$ implies $EX' \neq EY'_1$
- EX', EY'_1 and Ef'_1 is all of **C** as E is epic
- Thus H is iso, so G also coequalises F_1 and F_2



U doesn't reflect coequalisers







- G_2
- G₁ and G₂ are the only lenses that U maps to the coequaliser in Cat of UF₁ and UF₂
- No lens $H : \mathbf{D} \to \mathbf{D}$ such that $G_1 = H \circ G_2$