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Abstract. We study the categorical properties of the category of small categories and asym-

metric delta lenses, continuing the work begun by Chollet et al. at the Applied Category Theory

Adjoint School 2020. We give complete elementary characterisations of the monic and epic

lenses, confirming several of Chollet et al.’s conjectures. We also initiate the study of lens co-

equalisers, ultimately showing that every epic lens is regular, and that discrete opfibrations have

pushouts along monic lenses.

An important construction for proving many of these results is Johnson and Rosebrugh’s

“pullback” of lenses, which we call the proxy pullback of lenses. We give a new treatment of the

proxy pullback in terms of compatibility—a stronger notion of commutativity for squares of

lenses. We also prove that the proxy pullback has several pullback-like properties, including

an analogue of the well-known pullback pasting lemma. The proxy pullback is sometimes, but

not always, a real pullback. Using new notions of sync-minimal and independent lens spans,

we characterise when a lens span that forms a commuting square with a lens cospan has a

comparison lens to a proxy pullback of the cospan.
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CHAPTER 1

Introduction

The term lens has become widely used for naming mathematical structures that capture

fundamental features of bidirectional transformations. A bidirectional transformation is a

specification of when the joint state of two systems should be regarded as consistent, together

with a protocol for updating each system to restore consistency in response to a change in the

other [16]. The study of bidirectional transformations goes back as far as 1981 with Bancilhon

and Spyratos’ work on the view-update problem for databases [3]. The view-update problem is

about asymmetric bidirectional transformations; those where the state of one of the systems,

called the view, is completely determined by that of the other, called the source. Bidirectional

transformations also arise in many other contexts across computer science, such as when

programming with complex data structures and when linking user interfaces to data models.

An asymmetric state-based lens is a mathematical encoding of an asymmetric bidirectional

transformation in which the consistency restoration updates to the source are assumed to be

dependent only on the old source state and the updated view state. If S is the set of source

states and V is the set of view states, such a lens consists of a get function S ! V and a put

function S ⇥ V ! S that are often required to satisfy certain axioms. The earliest known

account of asymmetric state-based lenses may be found in Oles’ PhD thesis [25, Chapter VI],

where they are called extensions of store shapes ; they are a key ingredient in Oles’ semantics

for an imperative stack-based programming language with block-scoped variables because they

capture the essential properties of a data store that changes shape as variables come into and

go out of scope. All recent notions of lens, as well as the name, may be traced back to the

work of Pierce et al. [14]; they proposed variants of asymmetric state based lenses for modelling

bidirectional transformations on tree-structured data, and they also introduced—with their lens

combinators—the idea of domain specific languages for building lenses compositionally.

Diskin et al. highlighted the inadequacy of state-based lenses as a general mathematical

model for bidirectional transformations [12], providing several examples of situations in which

consistency restoration would benefit from knowing more about each change to the view than

just the view’s new state. In an asymmetric delta lens, their proposed alternative, systems are

modelled as categories of states and transitions (deltas) rather than simply as sets of states.

The put operation takes as input specifically which transition occurred in the view rather than

just the end state of that transition, and it likewise gives as output a transition in the source

rather than just the end state of that transition. In this thesis we will use the terms lens and

asymmetric lens as synonyms for the term asymmetric delta lens.

Application of category theory to the study of lenses has already proved fruitful. Johnson

and Rosebrugh’s research program [17, 19, 20] has enabled a unified treatment of symmetric and
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OUTLINE 2

asymmetric lenses, with the perspective that a symmetric lens is an equivalence class of spans

of asymmetric lenses. Ahman and Uustalu’s observation that asymmetric lenses are compatible

functor cofunctor pairs [2], and Clarke’s generalisation of lenses to the internal category theory

setting [10], have enabled an abstract diagrammatic approach to these lenses [9], in which we

may profit from the already well-developed theory of functors and discrete opfibrations.

Chollet et al. [8], a group from the Applied Category Theory Adjoint School 2020, initiated

the e↵ort to better understand the category Lens of small categories and lenses by

• showing that this category has equalisers and coproducts,

• giving su�cient conditions for a lens to be monic and for a lens to be epic,

• giving su�cient conditions for the proxy pullback of lenses (they call it the imported pullback)

to be a real pullback, and

• showing that Lens is actually extensive.

Clarke presented their progress to the Australian Category Seminar in February 2021, along

with several conjectures, including that their su�cient conditions for a lens to be monic and

also those for a lens to be epic are actually also necessary conditions.

The starting point for this thesis was the author’s realisation that Chollet et al.’s mono

conjecture does indeed hold, and actually has a simple proof using the proxy pullback. This

also inspired a proof for their epi conjecture, which in turn enabled progress in studying the

coequalisers in Lens . Despite Lens not having all coequalisers, nor the forgetful functor from

Lens to Cat preserving or reflecting them, the author obtained two positive results, namely that

• pushouts of discrete opfibrations along monic lenses exist, and

• every epic lens is proxy e↵ective, that is, coequalises its proxy kernel pair.

The author presented his thesis work up to this point, including the results about monos and epis

and those about coequalisers, at the Applied Category Theory 2021 conference. An associated

article [11] will appear in the conference proceedings.

The latter of the two positive results above is especially surprising since there are epis in

Cat that are not e↵ective epis. It also suggests that proxy pullbacks may actually be a good

substitute for real pullbacks in more situations than one might expect. Indeed, checking whether

Lens has proxy analogues of common pullback-related properties revealed several interesting

results. One such result is a proxy analogue of the well-known pullback pasting lemma. This

is quite surprising because the pullback pasting lemma is usually proved using the universal

property of the pullback, one that proxy pullbacks do not in general possess. Another one is that

Lens has a proxy-pullback-stable regular-epi mono orthogonal factorisation system—we might

say that Lens is a proxy-regular category. This is again surprising as Cat is not a regular category.

Outline

In Chapter 2, as well as establishing notation used throughout this thesis, we define the

notions of cofunctor and lens, and their respective categories Cof and Lens. We also recall

several properties of discrete opfibrations and split opfibrations—these are special kinds of lenses.
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In Chapter 3, we give a new treatment of proxy pullbacks that is more amenable to a category

theoretic style of argument. This treatment begins with a new definition of the proxy pullback

in terms of compatibility—a notion of commutativity for squares of lenses that is stronger than

the usual notion of commutativity. With our new definition, a given lens cospan could have

many proxy pullbacks, but there is always a unique span isomorphism between any two of them.

Additionally, the forgetful functor from Lens to Cat in some sense creates proxy pullbacks in

Lens from real pullbacks in Cat ; in particular, every lens cospan has a proxy pullback. We also

prove several other pullback-like properties of the proxy pullback, including

• that a compatible-lens transformation (a kind of natural transformation) between two lens

cospans extends uniquely to one between proxy-pullback squares on the cospans; and,

• the aforementioned proxy analogue of the pullback pasting lemma.

In Chapter 4, inspired by the approaches of Böhm [6] and Simpson [29] to pullback-like

constructions in other categories, we characterise when a lens span that forms a commuting

square with a lens cospan has a comparison lens to a proxy pullback of the cospan. With the

new notions of sync-minimal and independent lens spans, we prove that

• the existence of such a comparison lens necessitates that the lens span be independent and

be compatible with the cospan, and

• a proxy pullback of a lens cospan is terminal amongst the independent spans that are

compatible with the cospan if and only if the proxy-pullback span is sync-minimal.

In particular, a proxy pullback of a lens cospan is a real pullback if and only if the proxy-pullback

span is sync minimal and all lens spans that form commuting squares with the cospan are

independent and are compatible with the cospan. Specialising these results for proxy products,

we also show that a proxy product of two categories is a real product if and only if at least one

of the two categories is a discrete category, confirming another of Chollet et al.’s conjectures.

In Chapter 5, we prove the conjecture by Chollet et al. [8] that the forgetful functor from

the category of lenses to the category of functors preserves monos. Together with their result

that it reflects monos, we deduce that the monic lenses are the unique lenses on cosieves; these

are equivalently the out-degree-zero subcategory inclusion functors. We also provide a proof,

simpler than the original one sketched by Lack, that the forgetful functor preserves epis.

In Chapter 6, we initiate the study of coequalisers of lenses. We begin with examples of

how they are not as well behaved as one might hope; specifically, not all parallel pairs of lenses

have coequalisers, and the forgetful functor from Lens to Cat neither preserves nor reflects all

coequalisers. We then prove the main result of this chapter, Theorem 6.6, which is about the

coequalisers that are actually reflected by the forgetful functor. We use Theorem 6.6 to show

that the category of lenses has pushouts of discrete opfibrations along monos, and also that

every epic lens is regular. The former enables us to also show that every monic lens is e↵ective.

An early version of Chapters 5 and 6 will appear in the Applied Category Theory 2021

conference proceedings in the article Coequalisers under the lens [11]. Although the work on

proxy pullbacks in Chapters 3 and 4 is more recent, it seems most natural to present it first.



CHAPTER 2

Background

2.1. Notation

Application of functions (functors, etc.) is written by juxtaposing the function name with

its argument, and parentheses are only used when needed. Binary operators like � have lower

precedence than application, so an expression like Fa � Fb parses as (Fa) � (Fb).

Let Cat denote the category whose objects are small categories and whose morphisms are

functors. Categories with boldface names A, B, C, etc. are always small. We write |C| for the

set of objects of a small category C, and, for all X, Y 2 |C|, we write C(X, Y ) for the set of

morphisms of C from X to Y . For each X 2 |C|, we write C(X, ⇤) for the set
F

Y 2|C| C(X, Y )

of all morphisms in C out of X. We write src f and tgt f for, respectively, the source and target

of a morphism f . We also write f : X ! Y to say that X, Y 2 |C| and f 2 C(X, Y ). The

composite of morphisms f : X ! Y and g : Y ! Z is denoted g � f .

The category with a single object 0 and no non-identity morphisms, also known as the

terminal category, is denoted 1. The category with two objects 0 and 1 and a single non-identity

morphism, namely u : 0! 1, also known as the interval category, is denoted 2. The category

with two objects 0 and 1 and two non-identity morphisms, namely v : 0! 1 and v
�1 : 1! 0,

also known as the free living isomorphism, is denoted I. We will identify objects and morphisms

of a small category C with the corresponding functors 1! C and 2! C respectively.

If the square

D B

A C

T

S G

F

(1)

in Cat is a pushout square and F
0 : A! C

0 and G
0 : B! C

0 are functors for which F
0�S = G

0�T ,

then we write [F 0
, G

0] for the functor C! C
0 induced from F

0 and G
0 by the universal property

of the pushout. Similarly, if the square (1) in Cat is a pullback square and S
0 : D

0 ! A and

T
0 : D

0 ! B are functors for which F �S 0 = G�T 0, then we write hS 0
, T

0i for the functor D
0 ! D

induced from S
0 and T

0 by the universal property of the pullback. By our above identification

of objects with functors from 1, if A 2 |A| and B 2 |B| are such that FA = GB, then hA, Bi
is the object of D selected by the functor 1 ! D induced by the universal property of the

pullback from the functors 1! A and 1! B that respectively select the objects A and B.

4



2.2. COFUNCTORS AND LENSES 5

2.2. Cofunctors and lenses

The definition of (asymmetric delta) lens most useful to us will be as a suitable pairing of a

functor and a cofunctor [2]. Let us first recall the definition of a cofunctor [1, 10], specialised

from the internal category theory setting to categories internal to Set , i.e. small categories.

Definition 2.1. For small categories A and B, a cofunctor F : A! B consists of

• a function F : |A|! |B|, called the object function, and

• functions F
A : B(FA, ⇤)! A(A, ⇤) for all A 2 |A|, called lifting functions,

such that the equations

F tgtFA
b = tgt b F

A idFA = idA F
A(b0 � b) = F

A
0
b
0 � FA

b

(PutTgt) (PutId) (PutPut)

hold whenever they are defined.

Warning 2.2. The notions of cofunctor and contravariant functor are distinct and unrelated.

It is unfortunate that the name cofunctor is now entrenched in the literature as the similarity

between the names cofunctor and contravariant functor is a common source of confusion. In

Chapter 7 the author proposes that we rename cofunctor to retrofunctor in order to eliminate

this point of confusion, although it is likely too late for such a name change to be widely adopted.

There is a category Cof whose objects are small categories and whose morphisms are

cofunctors. The composite G � F of cofunctors F : A ! B and G : B ! C has as its object

function the composite of the object functions of F and G, and has (G � F )Ac = F
A
G

FA
c for

all A 2 |A| and all c 2 C(GFA, ⇤).

In the following definition of a lens, although we use the name of the lens to refer both to its

get functor and its put cofunctor, the compatibility condition ensures that there is no ambiguity.

Definition 2.3. For small categories A and B, a lens F : A! B consists of

• a functor F : A! B, called the get functor, and

• a cofunctor F : A! B, called the put cofunctor,

with same object functions, such that the equation

FF
A
b = b (PutGet)

holds whenever it is defined.

There is a category Lens whose objects are small categories and whose morphisms are lenses.

Identity morphisms and composites in Lens come from those in Cat and Cof in the obvious way.

There are also identity-on-objects functors

G : Lens ! Cat and P : Lens ! Cof

that respectively send a lens to its get functor and put cofunctor.

It will at times be convenient to draw functors, cofunctors and lenses all in a single diagram;

we shall call such a diagram a mixed diagram. In a mixed diagram, the arrow always points
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in the direction of the action on objects whilst the solid arrow head decorations indicate the

directions of the actions on morphisms. Thus the arrows

A B A B A B

in a mixed diagram respectively represent a functor, a cofunctor and a lens. When we say that

a mixed diagram commutes, we mean that

• the diagram of the object functions of all of the functors, cofunctors and lenses commutes;

• the diagram of all of the functors, including the get functors of the lenses, commutes; and

• the diagram of all of the cofunctors, including the put cofunctors of the lenses, commutes.

2.3. Discrete opfibrations and split opfibrations

Split opfibrations and discrete opfibrations are both important classes of lenses.

Definition 2.4. A functor F : A ! B is a discrete opfibration if, for each A 2 |A| and each

b 2 B(FA, ⇤), there is a unique a 2 A(A, ⇤) such that Fa = b.

Definition 2.5. A lens F : A! B is a discrete opfibration if the equation

F
A
Fa = a (GetPut)

holds for each A 2 |A| and each a 2 A(A, ⇤).

Remark 2.6. The name GetPut has, in the past, been used for what is now called PutId. The

author believes that our repurposing of the name GetPut is appropriate as the above equation

is, in some sense, dual to the one for PutGet. The reader should note that lenses in general

need not satisfy GetPut the way that we have defined it.

If F : A! B is a discrete opfibration, then there is a unique lens mapped by G to F , which

we sometimes also refer to as F . A lens is a discrete opfibration if and only if its get functor is

a discrete opfibration. Together, these results mean that we need not specify whether a discrete

opfibration F : A! B is a functor or a lens, and we can use the name F in both functor and

lens contexts without ambiguity.

Definition 2.7. For a functor F : A! B, a morphism f : X ! Y in A is F -opcartesian if, for

all morphisms f 0 : X ! Y
0 in A and all morphisms v : FY ! FY

0 in B such that Ff
0 = v �Ff ,

there is a unique morphism u : Y ! Y
0 in A such that f 0 = u�f and v = Fu. For f to be weakly

F -opcartesian, the property described in the previous sentence need only hold for v = idFY .

A

X Y

Y
0

f

8f 0
9!u

B

FX FY

FY
0

Ff

Ff
0

8v
F

Definition 2.8. A lens F : A! B is a split opfibration if each morphism F
A
b is GF -opcartesian.
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It is well known that, for a functor, having opcartesian lifts is equivalent to having weakly

opcartesian lifts that are closed under composition. In the following proposition, by starting

with a lens, we have assumed, with the PutPut axiom, that the chosen lifts are closed under

composition. Hence it su�ces to ask that these chosen lifts be weakly opcartesian.

Proposition 2.9. A lens F : A ! B is a split opfibration if and only if, for all a : A ! A
0

in A, there is a unique u : tgtFA
Fa! A

0 in A such that a = u � FA
Fa and Fu = idFA0.

A

A tgtFA
Fa

A
0

F
A
Fa

8a
9!u

B

FA FA
0

FA
0

Fa

FaF

In particular, every discrete opfibration is a split opfibration.



CHAPTER 3

Proxy pullbacks

From the work of Chollet et al. [8], we know that Lens has equalisers and a terminal object.

Were Lens to also have all binary products, then it would have all finite limits. Unfortunately,

the product of the category 2 with itself does not exist in Lens (we will prove this shortly), so

Lens does not have all binary products, nor all pullbacks. Despite this, there is a canonical way

to produce a commuting square on any cospan of lenses and these commuting squares turn out

to satisfy analogues of many of the properties of real pullbacks. This construction first appeared

in Johnson and Rosebrugh’s characterisation of symmetric delta lenses as equivalence classes of

spans of asymmetric delta lenses (which we are merely calling lenses) [17]; they use it to define

the composition of these spans. Johnson and Rosebrugh called it the “pullback” [17] of lenses,

with the inverted quotes used intentionally to signal that it is not a real pullback. It has also been

called the imported pullback by Chollet et al. [8]. We will adopt the name proxy pullback from

Bumpus and Kocsis [7]. This name is justified as the dual of Bumpus and Kocsis’ property SC2

for proxy pushouts does indeed hold for proxy pullbacks in Lens ; actually, a more general property

holds, as we shall see in Proposition 3.14. Other pullback-like constructions include Böhm’s

pullback relative to a class of spans [6], and Simpson’s conditional independent product [29].

Johnson and Rosebrugh’s definition of their “pullback” of lenses singles out a specific lens

span on each lens cospan. We will give a new alternative definition in which a proxy pullback is

a lens square that satisfies a certain property. With our new definition, each lens cospan may

have several proxy pullbacks, however there is always a unique span isomorphism between any

two proxy pullbacks of the same lens cospan, as we shall see in Corollary 3.15. Essential to

our definition of proxy pullback is the notion of a compatible lens square, which itself derives

from the more primitive notion of a compatible square of functors and cofunctors. This is

where our chapter begins. Later, after defining the proxy pullback, we will show that for any

chosen pullback of the get functors of a lens cospan, there is a unique proxy pullback of the

lens cospan whose get functors are that chosen pullback. This last result is similar to a limit

creation property, where proxy pullbacks are, in some sense, created from real pullbacks in Cat

by the functor G : Lens ! Cat . We conclude with several other pullback-like properties of proxy

pullbacks, including an analogue of the well-known pullback pasting lemma.

Before proceeding, on the next page we will prove the claim above that the product of the

category 2 with itself does not exist in Lens . The proof uses Chollet et al.’s observation that

the forgetful functor G : Lens ! Cat reflects monos [8].

8
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Proposition 3.1. The product of the category 2 with itself does not exist in Lens.

Proof. Consider the lens span

A

A1

A2

a

C

C1

C2

a
0

b
0

B

B1

B2

b
F G

between the isomorphic copies A and B of 2, where F and G are given explicitly by

Fa
0 = a = Fb

0
F

C1a = a
0

Ga
0 = b = Gb

0
G

C1b = b
0
.

Assume that A and B have a product A ⇥ B in Lens, and let P1 : A ⇥ B ! A and

P2 : A ⇥ B ! B be the projection lenses. Let L : C ! A ⇥ B be the unique lens such that

P1 � L = F and P2 � L = G. We claim that L is a monic lens. We have LC1 6= LC2 as

P1LC1 = FC1 = A1 6= A2 = FC2 = P1LC2.

Hence L is injective on objects, and La
0 and Lb

0 are both neither L idC1 nor L idC2 . Now

L
C1La

0 = L
C1LF

C1a = L
C1LL

C1P1
LC1a = L

C1P1
LC1a = F

C1a = a
0
,

and similarly L
C1Lb

0 = b
0, so we have L

C1La
0 = a

0 6= b
0 = L

C1Lb
0, and thus La

0 6= Lb
0. Hence L

is injective on morphisms. As the get functor of L is injective on objects and on morphisms, it

is monic. As G reflects monos, L must itself be a monic lens.

Consider now also the lenses

D

D1

D2

a
00

b
00d

C

C1

C2

a
0

b
0U and

D

D1

D2

a
00

b
00d

C

C1

C2

a
0

b
0V ,

where U and V are given explicitly by

Ua
00 = a

0 = V a
00

Ub
00 = b

0 = V b
00

Ud = a
0

U
D1a

0 = a
00 = V

D1a
0

U
D1b

0 = b
00 = V

D1b
0

V d = b
0
.

One may check that P1 � L � U = P1 � L � V and similarly P2 � L � U = P2 � L � V . As product

projection spans are jointly monic, and L is also monic, we get the contradiction U = V . ⇤
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3.1. Compatible squares of functors and cofunctors

The notion of compatible square arises quite naturally when considering the interaction

between functors and cofunctors. Not only is it central to our definition of proxy pullback, but

it is actually implicit in the definition of lens itself.

Definition 3.2. A compatible square of functors and cofunctors is a commuting mixed diagram

D B

A C

F

G G

F

such that for all D 2 |D| and all a 2 A(GD, ⇤),

FG
D
a = G

FD
Fa.

Remark 3.3. A lens A! B is exactly a compatible square

A B

B B

G

P

of functors and cofunctors. The functor G is the get functor of the lens and the cofunctor P is

the put cofunctor of the lens. The compatibility condition says that the get functor and put

cofunctor both have the same object function and that they satisfy the PutGet axiom. A lens

as above is a discrete opfibration if and only if the mixed diagram

A A

A B

P

G

is also a compatible square; compatibility of this square encodes the GetPut axiom.

There is a notion of transformation between two diagrams in Cat of the same shape that is

similar to that of a natural transformation, except that its components are cofunctors rather

than functors, and its squares are compatible squares rather than commuting squares; we will

call such a transformation a compatible-cofunctor transformation between the diagrams. Shortly,

in Theorem 3.6, we will see that for a pair of diagrams in Cat of the same shape and a limit

cone on each diagram, if there is a compatible-cofunctor transformation between the diagrams

then there is a unique comparison cofunctor between the apices of the limit cones that forms

compatible squares with the components of the limit cones and the compatible transformation.

This mirrors the fact that there is a unique comparison functor between the apices of the limit

cones when there is a natural transformation between the diagrams.

Our result about compatible-cofunctor transformations mentioned in the previous paragraph

is best stated with respect to a compatible-square analogue of the category Cat2 of commuting

squares of functors. In order for compatible squares to form the morphisms of a category, the

pasting of two compatible squares ought to be a compatible square itself.
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Lemma 3.4. Horiztonal and vertical pastings of compatible squares of functors and cofunctors

are also compatible squares of functors and cofunctors.

Both pasting operations have compatible squares which act as identities. For horizontal

pasting, these are the ones in which both functors are identity functors. For vertical pasting,

these are the ones in which both cofunctors are identity cofunctors. The interchange law for

these two pasting operations holds trivially.

Let CofSq be the category whose objects are cofunctors and whose morphisms from a

cofunctor F : A1 ! A2 to a cofunctor G : B1 ! B2 are the compatible squares of shape

A1 B1

A2 B2

F G
.

Composition is given by horizontal pasting and identities are as described above. There are

source and target functors S,T : CofSq ! Cat that respectively map each cofunctor to its source

and target category, and each compatible square to its top and bottom functor.

Remark 3.5. A reader familiar with double categories will have noticed that above we described

various aspects of a flat strict double category of categories, functors, cofunctors and compatible

squares. We will have more to say about this in Chapter 7.

Theorem 3.6. The functor hS, Ti : CofSq ! Cat ⇥ Cat creates limits.

Proof. Let F be a J-shaped diagram in CofSq . Let A and B be the respective J-shaped

diagrams S � F and T � F in Cat . The image by F of a morphism j : J1 ! J2 of J in CofSq can

be written as the compatible square

AJ1 AJ2

BJ1 BJ2

Aj

FJ1 FJ2

Bj

. (1)

Let ↵ and � be limit cones in Cat on the respective diagrams A and B with respective apices A

and B. First, we will show that there is a unique cofunctor F : A! B such that

A AJ

B BJ

↵J

F FJ

�J

. (2)

is a compatible square for each J 2 |J|. Later, we will see that these compatible squares form

the components of a limit cone in CofSq on the the diagram F.

We begin with uniqueness. Suppose that such a cofunctor F : A! B exists. Let A 2 |A|
and let b 2 B(FA, ⇤). For each J 2 |J|, we have �JFA = (FJ)↵JA and ↵JF

A
b = (FJ)↵JA�Jb

by compatibility of the square (2). Universality of the limit cones � and ↵ then respectively

determine the values of FA and F
A
b.
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We now prove existence. Define the object and lifting functions of F pointwise from the

universal properties of the limit cones � and ↵ as above. The cofunctor axioms PutId, PutPut

and PutTgt for F follow from the same axioms for each of the cofunctors FJ , together with

the universality of the limit cones ↵ and � and the functoriality of their components. We see

immediately from the definition of F that each of the squares (2) is a compatible square.

The compatible squares (2) do indeed form the components of a cone on the diagram F. It

remains to show that this cone is actually a limit cone. Consider another cone on the diagram F

whose J-component is a compatible square depicted as the outer rectangle in the diagram

C A AJ

D B BJ

U

�J

G

↵J

F FJ

V

�J

�J

.

From the universal properties of the limit cones ↵ and �, there are unique functors U : C! A

and V : D ! B such that, for each J 2 |J|, the top and bottom triangles in the diagram

commute. It su�ces to show that the left-hand square in the diagram is a compatible square.

Let C 2 |C| and d 2 D(GC, ⇤). For each J 2 |J|, we have

�JFUC = (FJ)↵JUC = (FJ)�JC = �JGC = �JV GC

and also

↵JUG
C
d = �JG

C
d = (FJ)�JC�Jd = ↵JF

UC
V d.

From the universal properties of the limit cones � and ↵, we may deduce, respectively, that

FUC = V GC and that UG
C
d = F

UC
V d. ⇤

All major results about proxy pullbacks in this chapter may be thought of as following,

ultimately, from Lemma 3.4 and Theorem 3.6.

3.2. Compatible squares of lenses and the proxy pullback

In the previous section, we defined the notion of compatibility for mixed diagrams of a special

shape—squares with one pair of opposite sides being functors and the other pair of opposite

sides being cofunctors. We may think of this notion of compatibility as a generalised notion

of commutativity for mixed diagrams of this special shape. There are eight mixed diagrams

underlying a lens square; for each lens in the square, we must choose whether to keep its get

functor or its put cofunctor. The usual notion of commutativity makes sense for two of these

underlying mixed diagrams, and our notion of compatible square of functors and cofunctors

makes sense for two more of these underlying mixed diagrams. A compatible lens square will

be one in which all four of these underlying mixed diagrams commutes or is compatible as

appropriate; this is more restrictive than merely asking that the lens square commute.
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Definition 3.7. A compatible lens square is a commuting lens square

D B

A C

G

F

G

F

(3)

such that the mixed diagrams

D B

A C

PG

GF

PG

GF

and
D B

A C

GG

PF

GG

PF

are compatible squares of functors and cofunctors. We also say that the lens span (G,F ) is

compatible with the lens cospan (F,G).

Explicitly, the compatibility conditions above require that the equations

FG
D
a = G

FD
Fa and GF

D
b = F

GD
Gb

hold whenever they are defined.

Proposition 3.8. The pasting of two compatible lens squares is a compatible lens square.

Proof. This follows directly from Lemma 3.4. ⇤

Proposition 3.9. Every commuting lens square for which one leg of the cospan is a discrete

opfibration is a compatible lens square.

To understand the following proof of the above proposition, it will be helpful to recall from

Remark 3.3 the compatible squares of functors and cofunctors that encode the PutGet axiom of

a lens and the GetPut axiom of a discrete opfibration. By Lemma 3.4, we may horizontally

and vertically paste such compatible squares together along common sides and the result is

always a compatible square. There is no ambiguity as to which compatible square of functors

and cofunctors is represented by a given pasting diagram of such compatible squares as each

such compatible square is completely determined by its boundary.

Proof. Consider a commuting lens square (3). Without loss of generality, suppose that the

lens F is a discrete opfibration. Each square in the pasting diagrams

D D D B

A A B B

A C C C

PG PG PF

GF

PF PG PG

GF

and

D A A

D A C

D B C

B B C

GG

PF

GG GF

GF

PF

GG

GG
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is a compatible square of functors and cofunctors. For example, in the left pasting diagram, the

lower left square encodes the GetPut axiom of the discrete opfibration F , the upper right one

encodes the PutGet axiom of the lens F , and the middle one is the horizontal pasting identity

square on the cofunctor PF � PG = PG � PF . By Lemma 3.4, the boundaries of these pasting

diagrams are also compatible squares of functors and cofunctors. ⇤

Remark 3.10. As all identity lenses are discrete opfibrations, the above proposition implies

that every commuting lens triangle becomes a compatible lens square by inserting an identity

lens into the triangle in the appropriate place.

Example 3.11. Not all commuting lens squares are compatible lens squares. In the following,

we use the previously introduced notation for 2 and 1. Consider the commuting square

2 2

2 1

G

F G

F

in Lens . The lenses F and G are both the same unique lens to the terminal category, and the

lenses F and G are both the same identity lens on the category 2. The square is not compatible

as G
0
Fu = G

0 id0 = id0 whilst GF
0
u = Gu = u.

Definition 3.12. A proxy-pullback square is a compatible lens square sent by G to a pullback

square in Cat . A proxy pullback of a lens cospan is a lens span forming a proxy-pullback square

with the cospan. In diagrams, we will mark proxy-pullback squares with PPB. Additionally,

• a proxy kernel pair of a lens is a proxy pullback of the cospan with both legs the lens, and

• a proxy product is a proxy pullback of a cospan whose apex is the terminal category.

For a lens square (3) whose get functors form a pullback square in Cat , the universal property

of the pullback gives the following equivalent characterisation of the compatibility conditions:

for all D 2 |D|, all a 2 A(GD, ⇤) and all b 2 B(FD, ⇤),

FG
D
a = G

FD
Fa ()

2

D B

A C

a

G
FD

Fa

G
D
a

GF

GG

y
GG

GF

commutes,

GF
D
b = F

GD
Gb ()

2

D B

A C

F
GD

Gb

b

F
D
b

GF

GG

y
GG

GF

commutes.

Actually, starting with a pullback in Cat of the get functors of a lens span, the diagrams on the

right in the above equivalences tell us how to define lifts on the pullback projection functors; it
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is easy to check that this turns these functors into lenses and that the resulting lens square is

compatible. This is the creation-like result mentioned in the introduction to this chapter.

Proposition 3.13. For each lens cospan, there is a unique proxy pullback of the cospan above

each pullback of the get functors of the cospan.

Rather than the nuts-and-bolts proof outlined above, we may instead deduce Proposition 3.13

from Theorem 3.6 with a high-level diagrammatic argument.

Proof. In summary, applying Theorem 3.6 to two suitably chosen compatible-cofunctor

transformations between functor cospans gives us the put cofunctors of the lenses that we

need to construct, as well as the compatible squares of functors and cofunctors needed for the

constructed lens square to be a compatible one. Commutativity of the put cofunctors of this

lens square comes from one final application of Theorem 3.6.

In detail, start with chosen pullbacks of GG and GF along each other in Cat . We denote

them respectively by GG and GF as we will shortly construct lenses G and F with these functors

as their get functors. By Theorem 3.6, as the bottom and right-hand faces of the cubes

A C

D B

A C

A C

y

y
GF

GF

PG

PG

GF

GG
GG

GF

and

B B

D B

C C

A C

y

y

GG
GG

PF

PF

GF

GG
GG

GF

are compatible squares of functors and cofunctors, there are unique cofunctors PG and PF

as depicted such that the top and left-hand faces of the cubes are also compatible squares of

functors and cofunctors. One of these compatible squares tells us that GG and PG form a lens G,

another that GF and PF form a lens F , and the remaining two that the constructed lens square

is compatible, so long as it also commutes. As the bottom and right-hand faces of the cube

C

C C

C

y

A

A C

C

y

D B

A C

y
PF

PF

GF

GF

PG

PGGF

GG GG

GF

=

C

C C

C

y

C

B B

C

y

D B

A C

y

PG

PG

GG GG

PF

PF

GF

GG GG

GF

are compatible squares of functors and cofunctors, by Theorem 3.6, there is a unique cofunctor

along top-left edge of the cube that such that its top and left-hand faces are also compatible

squares of functors and cofunctors. As PF � PG and PG � PF are both such a cofunctor, they
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are equal by uniqueness. The lens span (G,F ) is thus a proxy pullback of the lens cospan (F,G)

that lies above the chosen pullback (GG,GF ) of the cospan (GF,GG) in Cat ; the uniqueness of

(G,F ) follows from the uniqueness of PG and PF . ⇤

Many of the pullback-like properties of the proxy pullback are consequences of the following

proposition, which is a proxy-pullback analogue of Theorem 3.6.

Proposition 3.14. Consider the diagram

D
0

B
0

D B

A
0

C
0

A C

F
0

G
0 G

0

F
0

TD
TB

TA
TC

F

G
G

F

PPB

PPB

(4)

in Lens. If the bottom and right-hand faces of (4) are compatible lens squares, then

• there is a unique functor GTD : D! D
0 such that the squares

A D

A
0

D
0

GTA

GG

GTD

GG
0

and
D B

D
0

B
0

GTD

GF

GTB

GF
0

in Cat commute,

• there is a unique cofunctor PTD : D! D
0 such that the mixed diagrams

A D

A
0

D
0

PTA

GG

PTD

GG
0

and
D B

D
0

B
0

PTD

GF

PTB

GF
0

are compatible squares of functors and cofunctors, and

• the functor GTD and cofunctor PTD are actually the get functor and put cofunctor of a lens

TD : D! D
0 which makes the top and left-hand faces of (4) into compatible lens squares.

Proof. Consider the mixed diagrams

D
0

B
0

D B

A
0

C
0

A C

y

y
GF

0

GG
0 GG0

GF 0

GTD

GTB

GTA

GTC

GF

GG
GG

GF

and

D
0

B
0

D B

A
0

C
0

A C

y

y
GF

0

GG
0 GG0

GF 0

PTD

PTB

PTA

PTC

GF

GG
GG

GF

.

Let GTD be the unique comparison functor in the left-hand diagram from the universal property

of the pullback, and let PTD be the unique comparison cofunctor in the right-hand diagram



3.2. COMPATIBLE SQUARES OF LENSES AND THE PROXY PULLBACK 17

from Theorem 3.6. Applying Theorem 3.6 to the diagram

D
0

A
0

A
0

B
0

C
0

D
0

B
0

y
GF

0

GG
0

GF 0

GG
0

GG0

GF
0

D
0

B
0

A
0

C
0

D B

A

GF
0

GG
0 GG0

GF 0

GTD

GF

GG

GTA

GTB

PTA

PTD

PTB

y

in CofSq , we see that GTD and PTD form a lens TD. It remains to verify that the two lens

squares involving TD are compatible lens squares. Commutativity of the get functors of these

squares comes from the top and left-hand faces of the cube defining GTD. The compatibility

conditions involving PTD come from the top and left-hand faces of the cube defining PTD. The

compatibility conditions involving GTD are obtained by applying Theorem 3.6 to the diagrams

B
0

C
0

C

B
0

C
0

B B

y

GG0

GTB

GG

GTC

GG0

GTB

D
0

B
0

A
0

C
0

D B

A

GF
0

GG
0 GG0

GF 0

GTD

GF

GG

GTA

GTB
PF

0

PF 0

PF

PF

y

A
0

A
0

A

C
0

C
0

A C

y
GF 0

GF 0

GTA

GTA

GF

GTC

D
0

B
0

A
0

C
0

D B

A

GF
0

GG
0 GG0

GF 0

GTD

GF

GG

GTA

GTB
PG

0

PG0

PG

PG

y

in CofSq . Finally, applying Theorem 3.6 to the cubes

C
0

B
0

B
0

C
0

y

A
0

D
0

B
0

C
0

y

D B

A C

y

GG0 GG0

PF 0

PF
0

GG
0

GF 0

GF
0

GG0

PTA

PTD

PTB

PTC

GF

GG GG

GF

=

C
0

B
0

B
0

C
0

y

C

B B

C

y

D B

A C

y

GG0 GG0

PTC

PTB

PTB

PTC

GG GG

PF

PF

GF

GG GG

GF
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and

A
0

A
0

C
0

C
0

y

A
0

D
0

B
0

C
0

y

D B

A C

y
GF 0

GF 0

PG
0

PG0

GG
0

GF 0

GF
0

GG0

PTA

PTD

PTB

PTC

GF

GG GG

GF

=

A
0

A
0

C
0

C
0

y

A

A C

C

y

D B

A C

y
GF 0

GF 0

PTA

PTA

PTC

PTC

GF

GF

PG

PGGF

GG GG

GF

gives us the commutativity of the put cofunctors of the squares. ⇤

A compatible-lens transformation is a natural transformation between diagrams in Lens

whose naturality squares are actually compatible lens squares. Just as we interpreted Theorem 3.6

in terms of compatible-cofunctor transformations, we may also interpret the above proposition

in terms of compatible-lens transformations—a compatible-lens transformation between lens

cospans extends uniquely to a compatible-lens transformation between chosen proxy-pullback

squares on those cospans.

Corollary 3.15. Proxy-pullback spans are unique up to unique span isomorphism.

Proof. The proof proceeds similarly to a standard proof of the same result for pullbacks,

using Proposition 3.14 as a substitute for the universal property of a pullback.

In detail, let A
G � D

F�! B and A
G

0

 � D
0 F

0

�! B be lens spans that are both proxy pullbacks

of the same lens cospan A
F�! C

G � B. The bottom and right-hand faces of the cube

D
0

B

D B

A C

A C

F
0

G
0 G

F

L

F

G
G

F

PPB

PPB

in Lens are compatible lens squares, so by Proposition 3.14, there is a unique lens L as depicted

such that the top and left-hand faces of the cube are also compatible lens squares. In particular,

this means that L is a lens span morphism from A
G � D

F�! B to A
G

0

 � D
0 F

0

�! B. Viewing

the cube as instead going from the back face to the front face, we similarly obtain a lens span
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morphism L
0 from A

G
0

 � D
0 F

0

�! B to A
G � D

F�! B. Applying Proposition 3.14 to the cube

D B

D B

A C

A C

F

G

G

F

L
0�L

F

G
G

F

PPB

PPB

,

we deduce that L
0 � L = idD. We may similarly also deduce that L � L0 = idD0 . ⇤

3.3. Pullback-like properties of the proxy pullback

We conclude this chapter with several proxy analogues of well-known results about real

products and pullbacks. Chollet et al. [8] already proved a few such results, including that

• the proxy product is a semi-cartesian symmetric monoidal product on the category Lens

making G : Lens ! Cat into a strong monoidal functor,

• proxy products distribute over coproducts,

• the category Lens is extensive1.

It is also straightforward to check that identity lenses, isomorphisms, discrete opfibrations and

split opfibrations are all proxy pullback stable.

The pullback pasting lemma says that a commuting square is a pullback square if and only if

its pasting on the right with a pullback square is a pullback square.

Lemma 3.16 (Proxy-pullback pasting lemma). Consider the commuting diagram

D D
0

B
0

A A
0

C
0

G

TD

G
0

F
0

PPB G
0

TA F
0

(5)

in Lens where the right-hand square is a proxy pullback. Then the left-hand square is a proxy

pullback if and only if the outer rectangle is a proxy pullback and the mixed diagram

D D
0

A A
0

GG

PTD

GG
0

PTA

(6)

is a compatible square of functors and cofunctors.

Proof. Suppose that the left-hand square of (5) is a proxy-pullback square. The outer

rectangle of (5) is a compatible lens square by Proposition 3.8, and its get functors form a

pullback square in Cat by the pullback pasting lemma, so it is actually a proxy-pullback square.

1Coproduct inclusion lenses are discrete opfibrations so proxy pullbacks along them are real pullbacks.
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Conversely, suppose that the outer rectangle of (5) is a proxy-pullback square and that (6)

is a compatible square of functors and cofunctors. Let F = F
0 � TA and F = F

0 � TD, so that

D
0

B
0

D B
0

A
0

C
0

A C
0

F
0

G
0 G

0

F
0

TD

TA

F

G
G

0

F

PPB

PPB

(7)

is a commuting diagram in Lens. The bottom (Remark 3.10) and right-hand faces of (7) are

compatible lens squares, so Proposition 3.14 applies. From Remark 3.10 and our assumption

that (6) is a compatible square of functors and cofunctors, TD is the unique lens given by

Proposition 3.14, and so the top and left-hand faces of (7) are also compatible lens squares. The

left-hand square in (5) is thus a compatible lens square, and its get functors form a pullback

square in Cat by the pullback pasting lemma, so it is actually a proxy-pullback square. ⇤

Recall that an internal equivalence relation on an object X is a jointly monic span from X

to X equipped with reflexivity, symmetry, and transitivity morphisms, and that every kernel

pair is canonically an internal equivalence relation [See, for example, 21, Definition 1.3.6].

Corollary 3.17. All proxy kernel pairs have symmetry and transitivity lenses.

Proof. Let P1, P2 : K ! A be a proxy kernel pair of a lens F : A ! B. The symmetry

lens S : K! K and transitivity lens T : K⇥A K! K are constructed as in the diagrams

K A

K A

A B

A B

P2

P1

F

F

S

P1

P2
F

F

PPB

PPB

K A

K⇥A K K

A B

K A

P2

P1

F

F

T

P2

P1
F

Q2

Q1
P1

P2

PPB

PPB

using Proposition 3.14, where the bottom and right-hand faces of the right-hand cube are

compatible lens squares because they are proxy-pullback squares. ⇤

Remark 3.18. The proxy kernel pair of a lens F has a reflexivity lens if and only if F is a

discrete opfibration; in this case, it is a real kernel pair.

In later chapters, we will see further parallels between proxy pullbacks and real pullbacks.

This includes how they interact with monos, epis and image factorisations.



CHAPTER 4

Universal properties of the proxy pullback

Although the proxy pullback of a lens cospan is not in general a real pullback of the cospan,

it is a real pullback when, for example, one of the legs of the cospan is a discrete opfibration [8].

The goal of this chapter is to better understand when a proxy pullback in Lens is a real pullback.

We actually consider the more general question:

When does a lens span forming a commuting square with a lens cospan have a

unique comparison lens to the proxy pullback of the cospan?

One way to approach our question, at least initially, is to look for lens span properties that

are possessed by proxy pullback lens spans and that are preserved by precomposition with lenses.

With respect to our question, a necessary condition for the existence of such a comparison

lens is that the lens span possess these properties. We will consider two such properties. The

first is compatibility with the cospan. The second is a new property of lens spans that we call

independence, which is itself defined in terms of another new property of lens spans that we call

sync minimality. Actually, as we will see later in the chapter, if the proxy-pullback span is itself

sync minimal, then the possession of these two properties by the lens span is also a su�cient

condition for the existence of such a comparison lens.

A natural next step is then to determine whether the sync minimality of the proxy-pullback

span is itself also a necessary condition for the existence of such a comparison lens. This is not

in general true, however it is actually a necessary condition for the simultaneous existence of a

comparison lens to the proxy pullback from all independent lens spans that are compatible with

the cospan. Stated di↵erently, if a proxy-pullback span of a lens cospan is terminal amongst

the independent spans that are compatible with the cospan, then the proxy-pullback span is

necessarily sync minimal.

From the results mentioned above, one answer to our question is that the proxy pullback is

a real pullback if and only if

• the proxy-pullback span is sync minimal, and

• every lens span that forms a commuting square with the cospan is independent and also

compatible with the cospan.

Although this is a complete characterisation, it is somewhat unsatisfactory, as it is not expressed

in terms of properties of the cospan that are easily checked. There is, however, such a satisfactory

characterisation for lens cospans whose apex is the terminal category. Indeed, a proxy product

of two categories is a real product if and only if at least one of the two categories is a discrete

category. Finding such a satisfactory characterisation for general lens cospans is ongoing work.

21
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4.1. Sync-minimal and independent lens spans

As was explained in the introduction to this chapter, the new notions of sync minimality

and independence of lens spans give various necessary and su�cient conditions for the existence

of comparison lenses into proxy pullbacks. In this section, we merely introduce these notions,

delaying the development of their theory to when it is needed later in the chapter.

Johnson and Rosebrugh [17] proposed that we regard a lens span A
F � C

G�! B as a

synchronisation protocol between the systems represented by the categories A and B. From

this perspective, the category C has the sole purpose of coordinating the propagation to B of

transitions that occur in A and vice versa. As transitions always originate in A or B, there

may be morphisms in C that are never used—these are the ones that are not composites of a

sequence of morphisms that are all lifts along F or G. If there are no such extraneous morphisms

in C, we call the lens span sync minimal.

Definition 4.1. A lens span

A C B
F G

is sync minimal if each morphism in C is a composite of a sequence of morphisms

C1 C2 C3 Cn�1 Cn

c1 c2 · · · cn�1

that are all lifts along F or G, that is, for each k, either ck = F
CkFck or ck = G

CkGck.

There are many sync-minimal lens spans, such as the lens span (F,G) in Proposition 3.1.

However, not all proxy-pullback spans are sync minimal.

Example 4.2. Consider the proxy-pullback square depicted in the diagram below, where the

lens lifts are indicated by the colouring of the morphisms.

D (A1, B1)

(A0
2, B

0
2) (A2, B

0
2)

(A0
2, B2) (A2, B2)

(a,b)(a0,b)

(a,b0)(a0,b0)

A

A1

A
0
2 A2

a
0

a

BB1

B
0
2

B2

b

b
0

C

C1

C2

c

F

GG

F

PPB

The lens span (G,F ) is not sync minimal as the morphism (a0, b0) is not a composite of lifts.

Notice that removing (a0, b0) from D would make the span (G,F ) sync minimal.
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Starting with a lens span A
F � C

G�! B, by removing all morphisms in C that are not

composites of a sequence of morphisms that are lifts along F or G, we obtain a sync-minimal

lens span from A to B that encodes the same synchronisation protocol as (F,G). We call this

sync-minimal lens span the sync-minimal core of (F,G) and denote it by M(F,G). Let E(F,G)

denote the inclusion functor from the apex of M(F,G) to C.

We are now ready to define the notion of independence for lens spans. It is similar to a

jointly-monic condition, except only with respect to morphisms in the apex of the sync-minimal

core of the span with the same source object. Defining independence with respect to the sync-

minimal core is necessary for independence to be preserved by precomposition with lenses.

Definition 4.3. A lens span A
F � C

G�! B is called independent if, for all morphisms c and c
0

in the apex of M(F,G) with the same source, whenever Fc = Fc
0 and Gc = Gc

0, also c = c
0.

Remark 4.4. Simpson [29] defines the notion of independent product with respect to a chosen

independence structure—a multicategory of multispans, called independent multispans, that

satisfies certain additional properties. This is where our terminology for independent lens

spans originates. We will have more to say about Simpson’s independent products and local

independent products at the end of this chapter.

The lens span (G,F ) in Example 4.2 is independent. The lens span (F,G) in Proposition 3.1

is not independent.

Remark 4.5. Progress towards finding alternative characterisations of sync minimality and

independence of a more category theoretic nature is discussed in Chapter 7.

4.2. Necessity of compatibility and independence

Proxy-pullback spans of a lens cospan are, by definition, compatible with the cospan. In this

section, we will show that proxy-pullback spans are also independent, and that compatibility

and independence of lens spans are preserved by precomposition with lenses. It follows that

whenever a lens span that commutes with a lens cospan has a comparison lens to the proxy

pullback of the cospan, the span is necessarily independent and compatible with the cospan.

This is one of the claims made in the introduction to this chapter.

Proposition 4.6. All proxy-pullback spans are independent.

Proof. Let A
G � D

F�! B be a proxy pullback of some lens cospan. For all D 2 |D|, and

all d, d0 2 D(D, ⇤), if Fd = Fd
0 and Gd = Gd

0 then d = d
0 by the universal property of the

pullback in Cat underlying the proxy pullback. In particular, this holds for those objects and

morphisms in the apex of M(G,F ) as it is a subcategory of D. ⇤
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Proposition 4.7. Consider the following diagram in Lens, where K1 = K2 �H and J1 = J2 �H.

E1

E2

A B

C

H
K1 J1

K2 J2

F G

If the span (K2, J2) is compatible with the cospan (F,G), then so is the span (K1, J1).

Proof. Suppose that the span (K2, J2) is compatible with the cospan (F,G). Then

F �K1 = F �K2 �H = G � J2 �H = G � J1,

so the span (K1, J1) forms a commuting square with the cospan (F,G). For one of the

compatibility conditions, we have

J1K1
E
a = J2HH

E
K2

HE
a = J2K2

HE
a = G

J2HE
Fa = G

J1EFa.

The other compatibility condition holds similarly. ⇤

Proposition 4.8. Consider the following commuting diagram in Lens.

C1

A B

C2

F1 G1

H

F2 G2

If the span (F2, G2) is independent, then the span (F1, G1) is also independent.

Proof. Suppose that c and c
0 are morphisms in the apex of M(F1, G1) with the same source

object C such that F1c = F1c
0 and G1c = G1c

0. Then Hc and Hc
0 are morphisms in the apex

of M(F2, G2) with the same source object HC such that F2Hc = F2Hc
0 and G2Hc = G2Hc

0.

As (F2, G2) is independent, actually Hc = Hc
0. But c and c

0 are both composites of lifts along

H � F2 and H �G2, so they are both lifts along H, and thus c = H
C
Hc = H

C
Hc

0 = c
0. ⇤

Although compatibility and independence give necessary conditions for the existence of a

comparison lens, these conditions are not su�cient ones.

Example 4.9. Consider again the proxy-pullback square in Example 4.2. The sync-minimal

core M(G,F ) of (G,F ) is obtained by removing the morphism (a0, b0) from D. Although the

span M(G,F ) is independent and compatible with the cospan (F,G), there is no comparison lens

from it to the proxy-pullback span (G,F ). Assume that such a comparison lens exists. Then, as

the put cofunctor of the comparison lens commutes with the put cofunctors of the legs of both

spans, all of the morphisms in the apex of M(G,F ) are necessarily lifts of the corresponding

morphisms in D. The PutGet axiom necessitates that the lift by such a comparison lens of the

morphism (a0, b0) into the apex of M(G,F ) be distinct from the lifts of the other morphisms

(a0, b), (a, b0) and (a, b), but such a distinct morphism does not exist.
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4.3. Necessity and su�ciency of sync minimality

In the previous section we saw that if a lens span that commutes with a lens cospan has a

comparison lens to the proxy pullback of the cospan, then the lens span is necessarily independent

and compatible with the cospan. It turns out that if the proxy pullback is also sync-minimal,

then these necessary conditions are also su�cient ones.

Proposition 4.10. Consider the following commuting diagram in Lens.

E

D

A B

C

K J

G F

PPB

F G

Suppose that the span (K, J) is independent and is compatible with the cospan (F,G). If the span

(G,F ) is sync minimal, then there is a unique lens E! D such that the triangles commute.

Proposition 4.10 follows directly from a combination of the following two lemmas.

Lemma 4.11. Using the notation established in Proposition 4.10, let L be the unique comparison

functor from the span (GK,GJ) to the pullback span (GG,GF ). Then the mixed diagrams

A E

A D

PK

L

PG

and
E B

D B

PJ

L

PF

are compatible squares of functors and cofunctors.

Proof. For each E 2 |E| and each a 2 A(KE, ⇤), we have

LK
E
a = hGLK

E
a, FLK

E
ai = hKK

E
a, JK

E
ai = ha, GJE

Fai = ha, GFLE
Fai = G

LE
a,

and so the left-hand mixed diagram above is a compatible square. The right-hand mixed diagram

above is also a compatible square by a similar argument. ⇤

Lemma 4.12. Consider the following commuting mixed diagram.

C1

A B

C2

F1 G1

H

F2 G2

Suppose additionally that the the span (F1, G1) is independent and that the mixed diagrams

A E

A D

PF1

H

PF2

and
E B

D B

PG1

H

PG2
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are compatible squares of functors and cofunctors. If the span (F2, G2) is sync minimal, then

there is a unique lens structure on H such that the resulting diagram in Lens commutes.

Proof. Suppose that (F2, G2) is sync minimal. If there is is such a lens structure on H,

then, for all C 2 |C1|, all a 2 A(F1C, ⇤) and all b 2 B(G1C, ⇤), we necessarily have

H
C
F2

HC
a = F1

C
a and H

C
G2

HC
b = G1

C
b;

that is, the lifts by H of those morphisms of C2 that are lifts by F2 and G2 are determined

by the lifts by F1 and G1. As (F2, G2) is sync minimal, each morphism of C2 is a composite

of such lifts, and so the above equations and the PutPut axiom for H determine the lifts by

H of all morphisms of C2. Such a lens structure on H is thus uniquely determined if it exists.

Actually, by the independence of (F1, G1), this gives H well-defined lifts. The PutPut axiom is

immediate from the definition of H, the PutId axiom follows from that of F1 (or of G1), and

the PutGet axiom follows from the assumed compatible squares. ⇤

Although the sync minimality of a proxy pullback of a lens cospan is su�cient for the

existence of a comparison lens to the proxy-pullback span from an independent lens span that

is compatible with the lens cospan, it is not in general necessary. For example, there is always

a comparison lens from any proxy-pullback span to itself, namely, the identity lens on its

apex. However, sync minimality is in fact necessary for there to be such comparison lenses

simultaneously from all of the independent lens spans that are compatible with the lens cospan.

Proposition 4.13. Consider the proxy-pullback square in Lens depicted below.

D B

A C

F

G PPB G

F

If the proxy-pullback span (G,F ) is terminal amongst the independent spans that are compatible

with the cospan (F,G), then the proxy-pullback span (G,F ) is sync minimal.

To prove this proposition, we will consider what happens when there is a comparison lens to

a proxy pullback from its sync-minimal core.

Lemma 4.14. Let A
G � D

F�! B be a lens span. The functor E(G,F ) has a lens structure if and

only if it is the identity functor on D, in which case (G,F ) = M(G,F ) is sync minimal.

Proof. By construction, the functor E(G,F ) is an identity function on objects and is a subset

inclusion on morphisms. A lens that is surjective on objects is also surjective on morphisms [8].

Hence, if there is a lens with get functor E(G,F ), then E(G,F ) is surjective on morphisms, and

thus is actually the identity functor. Conversely, if E(G,F ) is the identity functor on D, then the

identity lens on D is a lens with get functor E(G,F ). ⇤

Proof of Proposition 4.13. Suppose that (G,F ) is terminal amongst the independent

spans that are compatible with (F,G). As the span (G,F ) is a proxy pullback, it is by definition
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compatible with the cospan (F,G), and it is independent by Proposition 4.6. The independence

of the span M(G,F ) and its compatibility with the cospan (F,G) follows from these properties

of the span (G,F ); the former from the way that the sync-minimal core is defined, and the

latter because independence is defined in terms of the sync-minimal core. By our assumption,

there is thus a comparison lens H from the span M(G,F ) to the span (G,F ). By the universal

property of the pullback span (GG,GF ) in Cat , the functors GH and E(G,F ) are both the unique

comparison functor from the span of get functors of M(G,F ) to the pullback span (GG,GF ),

and so they are necessarily equal. The result then follows by Lemma 4.14. ⇤

4.4. Proxy pullbacks of split opfibrations

In the remainder of this chapter, we unpack the results in the previous two sections for the

proxy pullback of a lens cospan with additional known properties. In this section, we consider

what happens when one of the legs of the cospan is a split opfibration.

Proposition 4.15. A proxy-pullback span of a lens cospan with one leg a split opfibration is

terminal amongst the independent lens spans that are compatible with the cospan.

Proposition 4.15 follows directly from Proposition 4.10 and the following lemma.

Lemma 4.16. Consider a proxy-pullback square

D B

A C

G

F

PPB G

F

.

If F or G is a split opfibration then the lens span (G,F ) is sync minimal.

Proof. Without loss of generality, suppose that F is a split opfibration. Let d : D1 ! D2

be a morphism in D, and let a = Gd : A1 ! A2 and b = Fd : B1 ! B2. Let u be the unique

comparison morphism from the F -opcartesian morphism F
A1Fa to a, as in the diagram

A1 A
0
2

A2

a

F
A1Fa

u .

Then d = ha, bi = hu, idB2i�hFA1Fa, bi = hu, GB2Fui�hFA1Gb, bi = G
hA0

2, B2iu�F hA1, B1ib. ⇤

Remark 4.17. Split opfibrations are pullback stable, so in the proof above F is actually a split

opfibration. However, lens spans with one leg a split opfibration are not in general sync minimal.

Shortly we will see that for a lens cospan with one leg a split opfibration, the independence

condition for lens spans forming compatible squares with the cospan is equivalent to a simpler

notion of independence, which we will call split independence.
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Definition 4.18. A lens span A
G � D

F�! B is called F -split independent if for all D1 2 |D|,
all a1 : GD1 = A1 ! A

0
1 in A, all b : FD1 = B2 ! B2 in B, and all a2 : tgtGF

D1b = A2 ! A
0
2,

as shown in the diagram

D

D1

D
0
1

D2

D
0
2

D
0
2

G
D1a1

F
D1b

F
D0
1b

G
D2a2

A

A1

A
0
1

A2

A
0
2

GF
D1b

a1 a2

GF
D0
1b

B

B1

B1

B2

B2

FG
D1a1

b

b

FG
D2a2

G F , (1)

whenever the square in A commutes and FG
D1a1 = idB1 and FG

D2a2 = idB2 , then also D
0
2 = D

0
2

and the resulting square in D commutes.

Proposition 4.19. Consider a compatible lens square

D B

A C

G

F

G

F

.

If F is a split opfibration, then (G,F ) is independent if and only if it is F -split independent.

The only if direction follows directly from the definition of independence. Essential to the

proof of the if direction is the following lemma.

Lemma 4.20. Suppose that F is a split opfibration and (G,F ) is F -split independent. Then,

each morphism d : D1 ! D2 in the apex of M(G,F ) has the factorisation

D1 D
0
2

D2

F
D1Fd

d
G

D0
2u

(2)

where u : GD3 ! GD2 comes from the universal property of the F -opcartesian morphism

F
GD1GFd, that is, u is the unique morphism of A for which Fu = id

FGD2
and the diagram

GD1 GD
0
2

GD2

F
GD1GFd

Gd

u (3)

commutes. In particular, the right leg of M(G,F ) is also a split opfibration.

We will return to prove the lemma shortly, but let us first finish the proof of the proposition.

Proof of if direction of Proposition 4.19. If F is a split opfibration and (G,F ) is

F -split independent, then Lemma 4.20 implies that each morphism d in the apex of M(G,F ) is

uniquely determined by the data Gd and Fd. Indeed, from (2), d is a composite of morphisms
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expressed in terms of Fd and u, and u itself is uniquely determined by the top side and

hypotenuse of the triangle (3), which are themselves expressed in terms of Gd and Fd. ⇤

Proof of Lemma 4.20. Recall that each morphism in the apex of M(G,F ) is a composite

D1 D2 D3 Dn�1 Dn

d1 d2 · · · dn�1

of morphisms in D such that, for each k, either dk = G
Dkak or dk = F

Dkbk, where ak = Gdk

and bk = Fdk. We will inductively construct the dashed morphisms in the diagram

D
0
1 D

0
2 D

0
3 D

0
n�1 D

0
n

D1 D2 D3 Dn�1 Dn

F
D0
1b1

G
D0
1u1

F
D0
2b2

G
D0
2u2

· · ·

G
D0
3u3

F
D0
n�1bn�1

G
D0
n�1un�1 G

D0
nun

d1 d2
· · ·

dn�1

in D such that the resulting diagram in D commutes and FG
D

0
kuk = id

FDk
for each k.

For the base step, we may set D
0
1 = D1 and u1 = id

GD1
, so that FG

D
0
1u1 = F idD1 = id

FD1
.

For the inductive step, suppose that we have already constructed D
0
k

and uk, and wish now

to construct D
0
k+1 and uk+1. Consider the diagram

D

D
0
k

Dk

D
0
k+1

Dk+1

Dk+1

G
D0
kuk

F
D0
k bk

dk

G
D0
k+1uk+1

C

Ck

Ck

Ck+1

Ck+1

ck

ck

A

A
0
k

Ak

A
0
k+1

Ak+1

F
A0
k ck

uk uk+1

ak

B

Bk

Bk

Bk+1

Bk+1

bk

bk

G

F

G

F

From the universal property of the F -opcartesian morphism F
A

0
kck, there is a unique morphism

uk+1 : A0
k+1 ! Ak+1 in A above idCk+1

such that the square in A above commutes.

Suppose that dk = G
Dkak. By the PutPut axiom, and commutativity of the lens square,

dk �GD
0
kuk = G

D
0
k+1uk+1 �GD

0
kF

A
0
kck = G

D
0
k+1uk+1 � FD

0
kG

Bkck. (4)

We also have FG
D

0
kuk = G

BkFuk = G
Bk idCk

= idBk
by compatibility of the lens square, and

similarly FG
D

0
k+1uk+1 = idBk+1

. Hence, applying F to both sides of (4), we see that bk = G
Bkck.

Thus (4) actually says that Dk+1 = Dk+1 and the square in D above commutes.

Otherwise, dk = F
Dkbk, and thus also ak = GF

Dkbk. Additionally, as the lens square is

compatible, FA
0
kck = GF

D
0
kbk. As (G,F ) is split independent, it follows again that Dk+1 = Dk+1

and the square in D above commutes. ⇤
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4.5. Proxy pullbacks of discrete opfibrations and proxy products

As all discrete opfibrations are split opfibrations, the results in the previous section apply in

particular to proxy pullbacks of lens cospans with one leg a discrete opfibration. Actually, by

better understanding the compatibility and independence of the lens spans that form commuting

squares with such a cospan, we may simplify Proposition 4.15 as follows.

Proposition 4.21. Proxy pullbacks of discrete opfibrations are real pullbacks in Lens.

Lemma 4.22. Consider a compatible lens square

D B

A C

G

F

G

F

.

If F or G is a discrete opfibration, then (G,F ) is independent.

Proof. Without loss of generality, suppose that F is a discrete opfibration. Let D1 2 |D|, let

a1 : GD1 = A1 ! A
0
1 in A, let b : FD1 = B2 ! B2 in B, and let a2 : tgtGF

D1b = A2 ! A
0
2, as

shown in the diagram (1). Suppose also that the square in A commutes, and that FG
D1a1 = idB1

and FG
D2a2 = idB2 . We have that

Fa1 = GG
B1Fa1 = GFG

D1a1 = G idB1 = idGB1 = idFA1

by compatibility of the lens square, and so a1 = idA1 as F is a discrete opfibration. Hence

G
D1a1 = G

D1 idA1 = idD1 and D
0
1 = D1. Similarly, GD2a2 = idD2 and D

0
2 = D2. As D

0
1 = D1,

we have F
D1b = F

D
0
1b. Hence the square in D commutes. ⇤

Proof of Proposition 4.21. By Proposition 4.15, a proxy-pullback span of a lens cospan

with one leg a discrete opfibration is terminal amongst the independent lens spans that are

compatible with the cospan. Every lens span that forms a commuting square with such a cospan

is actually compatible with the cospan by Proposition 3.9 and independent by Lemma 4.22. ⇤

Specialising further, we now consider the proxy pullbacks of those cospans whose apex is

the terminal category, that is, proxy products. Recall that the unique lens from a category C

to the terminal category is a discrete opfibration if and only if C is a discrete category. The

specialisation of Proposition 4.21 then says that the proxy product of a category with a discrete

category is a real product. Actually, in this case, the converse also holds.

Proposition 4.23. The proxy product of two categories is a real product if and only if at least

one of the two categories is a discrete category.

To prove the converse, it su�ces to show, for all non-discrete categories A and B, that there

is a non-independent lens span from A to B. We may explicitly describe such a non-independent

lens span; it is merely the so-called funny tensor product A ⇤ B of A and B with a canonical

lens structure on the projection functors. Henceforth, we will refer to the funny tensor product

as the free product of categories, as it generalises the well-known free product of groups. The

free product of categories has several di↵erent descriptions; we will use the following one.
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Definition 4.24. The free product A ⇤ B of categories A and B is the category with object

set |A|⇥ |B| whose morphisms are freely generated by those of the form

(A1, B)
(a,B)���! (A2, B) and (A,B1)

(A,b)���! (A,B2),

subject to the equations

(idA, B) = id(A,B) (a2, B) � (a1, B) = (a2 � a1, B)

(A, idB) = id(A,B) (A, b2) � (A, b1) = (A, b2 � b1).

There are projection lenses P1 : A ⇤ B! A and P2 : A ⇤ B! B, defined by the equations

P1(A,B) = A P1(a,B) = a P1(A, b) = idA P1
(A,B)

a = (a,B)

P2(A,B) = B P2(A, b) = b P2(a,B) = idB P2
(A,B)

b = (A, b),

whose get functors are the usual projection functors.

Proof of Proposition 4.23. The if direction is a particular case of Proposition 4.21.

For the only if direction, suppose that A and B are both non-discrete categories, that is, that

there are non-identity morphisms a : A1 ! A2 in A and b : B1 ! B2 in B. Then the morphisms

(A1, B1)
(a,B1)���! (A2, B1)

(A2,b)���! (A2, B2) and (A1, B1)
(A1,b)���! (A1, B2)

(a,B2)���! (A2, B2)

in A ⇤ B both have the same source object, and both are mapped by P1 to a and P2 to b, but

they are not equal. Hence the lens span A
P1 � A ⇤ B

P2�! B is not independent. ⇤

We conclude this chapter with a few remarks about the connections between the results

in this chapter and other works. Proposition 4.21 and the if direction of Proposition 4.23 are

already known to Chollet et al. [8]. Proposition 4.10, which is arguably the central result of this

chapter, is very closely related to Böhm’s relative pullback [6] and Simpson’s local independent

product [29]. To view a sync-minimal proxy pullback of a lens cospan as a pullback relative to

the class of independent spans that are compatible with the cospan, we would need to generalise

the notion of relative pullback to work relative to chosen classes of spans on each cospan rather

than merely relative to a single overall class of spans. To view a sync-minimal proxy pullback of

a cospan as a local independent product, we would need lens-multispan generalisations of the

lens-span notions of independence and compatibility in order to define the appropriate local

independence structure on Lens . Working out the details and implications of these connections

to the work of Böhm and Simpson is left as future work.



CHAPTER 5

Monic and epic lenses

In this chapter, we will give complete and elementary characterisations of the monos and

epis in Lens , confirming several conjectures by Chollet et al. [8]. These will allow us to deduce

• that Lens has an (epi, mono) factorisation system,

• that monos, epis and image factorisations in Lens are proxy-pullback stable, and

• that a proxy analogue of the kernel-pair characterisation of monos holds.

The last two of the three results listed above are further examples of ways in which the proxy

pullback in Lens behaves like a real pullback. We will also make extensive use of the epi

characterisation when we study the coequalisers in Lens in Chapter 6. In particular, it is

essential to our proof of Theorem 6.6, which is arguably the main result of that chapter.

5.1. Monic lenses

We will study the monos in Lens via their relation to those in Cat , expressed as follows.

Theorem 5.1. The functor G preserves and reflects monos.

Reflection was proved and preservation conjectured by Chollet et al. [8]. For the proof, recall

that a morphism is monic if and only if it has a kernel pair with both morphisms equal.

Proof that G preserves monos. Let M be a monic lens, and let (P1, P2) be its proxy

kernel pair. As M is monic and M � P1 = M � P2, actually P1 = P2, and so GP1 = GP2. But

(GP1,GP2) is the (real) kernel pair of GM in Cat . Hence GM is a monic functor. ⇤

Definition 5.2. A cosieve is an injective-on-objects discrete opfibration.

Chollet et al. [8] also showed that the get functor of a lens is monic if and only if the lens is

a cosieve. The following corollary to Theorem 5.1 is an extension of Chollet et al.’s result; it

says that monic lenses and cosieves are essentially the same. We will continue to use the term

cosieve for functors when we wish to distinguish these from monic lenses.

Corollary 5.3. The functor G restricts to a bijection between monic lenses and cosieves.

Proof. Let F be a monic lens. Then GF is a monic functor as G preserves monos. Monic

functors are injective on both objects and morphisms. Also, all injective-on-morphisms lenses

are discrete opfibrations. Hence GF is a cosieve.

Let F be a cosieve. As F is a discrete opfibration, there is a unique lens F such that GF = F .

As the functor F is monic and G reflects monos, the lens F is also monic. ⇤
32
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Remark 5.4. As monic lenses are discrete opfibrations, by Proposition 4.21, proxy pullbacks

along monos are real pullbacks. This also means that monos are proxy-pullback stable.

Knowing now that G preserves and reflects monos, we may show that the kernel-pair

characterisation of monos lifts from Cat to an analogous proxy-kernel-pair characterisation of

the monos in Lens . This is yet another pullback-like property of the proxy pullback.

Proposition 5.5. Let F be a lens, and let (P1, P2) be a proxy kernel pair of F . Then F is

monic if and only if P1 = P2, in which case P1 is an isomorphism.

Proof. Suppose that P1 = P2. As (GP1,GP2) is a kernel pair of GF and GP1 = GP2, the

functor GF is monic. As G reflects monos, the lens F is also monic.

Conversely, suppose that F is monic. Then P1 = P2 because F � P1 = F � P2. Also, as G

preserves monos, the functor GF is monic, and so the functor GP1 is an isomorphism. As G is

conservative, the lens P1 is also an isomorphism. ⇤

Corollary 5.6. A lens F : A! B is monic if and only if (idA, idA) is a proxy kernel pair of F .

Proof. We begin with the only if direction. Suppose that F is monic. Recall that every

lens has a proxy kernel pair. By Proposition 5.5, F has one of the form (P, P ) where P is an

isomorphism. The lens P is a lens span isomorphism from (P, P ) to (idA, idA), so (idA, idA) is

another proxy kernel pair of F . The if direction follows immediately from Proposition 5.5. ⇤

5.2. Lens images and factorisation

The images of the object and morphism maps of a functor do not always form a subcategory

of the target category of the functor. The get functor of a lens F is better behaved; in this case,

the images actually form an out-degree-zero subcategory ImF of the target category of the

lens, which we will call the image of F . By out-degree-zero subcategory, we mean one for which

any morphism out of an object in the subcategory belongs to the subcategory. As cosieves are

exactly the out-degree-zero subcategory inclusion functors, we obtain the following result.

Proposition 5.7. Every lens F : A! B has a factorisation

A ImF B
E

F

M

in Lens where M is monic and E is surjective on objects and morphisms.

Recall that a morphism e : A ! B is left orthogonal to a morphism m : C ! D, written

e ? m, if, for all pairs of morphisms f : A! C and g : B ! D such that g � e = m � f , there is

a unique morphism h : B ! C, called the diagonal filler, such that f = h � e and g = m � h.

A B

C D

f

e

g

h

m
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Also recall that a pair (E ,M ) of classes of morphisms is a (orthogonal) factorisation system if

• every morphism f factors as f = m � e for some e 2 E and some m 2M ,

• E is the class of morphisms e such that e ? m for all m 2M , and

• M is the class of morphisms m such that e ? m for all e 2 E .

Remark 5.8. The factorisation in Proposition 5.7 is already known to Johnson and Rosebrugh;

they observed that the surjective-on-objects lenses and the injective-on-objects-and-morphisms

lenses form a factorisation system on Lens [18]. We claim that it is actually an (epi, mono)

factorisation system—we have already shown that the injective-on-objects-and-morphisms lenses

are exactly the monic lenses and we will show in the next section that the surjective-on-objects

lenses are exactly the epic lenses. In Section 6.4, we will deduce the orthogonality conditions

without explicitly constructing diagonal fillers. The orthogonality conditions imply that the

factorisation in Proposition 5.7 is in fact an image factorisation.

5.3. Epic lenses

We may also study the epis in Lens via their relation to those in Cat .

Theorem 5.9. The functor G preserves and reflects epis.

Again, reflection was proved and preservation conjectured by Chollet et al. [8]. Lack sketched

a proof of preservation in an unpublished personal communication to Clarke; we present a new,

simpler proof below. First, we recall some preliminary results about epic functors and epic lenses.

Proposition 5.10. Every epic functor is surjective on objects. Every functor that is surjective

both on objects and on morphisms is epic.

Recall that not all epic functors are surjective on morphisms.

Example 5.11. Let J : 2! I be the functor that sends the non-identity morphism u of the

interval category 2 to the morphism v of the free living isomorphism I. Then J is epic because

any two functors out of I which agree on v must also agree on v
�1. However, the morphism v

�1

is not in the image of J .

Proposition 5.12. Let F be a lens, and let J1, J2 be the cokernel pair of GF . Then J1 and J2

are cosieves, and the unique lenses J1 and J2 above J1 and J2 satisfy J1 � F = J2 � F .

Proof. Let F = M � E be the factorisation of F given in Proposition 5.7. By Proposi-

tion 5.10, GE is an epic functor. As J1 � GM � GE = J1 � GF = J2 � GF = J2 � GM � GE,

actually J1 � GM = J2 � GM . It follows that GM also has cokernel pair J1, J2. As cosieves

are pushout stable and GM is a cosieve, so are J1 and J2. As there is a unique lens above the

discrete opfibration J1 � GM = J2 � GM , we must have that J1 �M = J2 �M . ⇤

Remark 5.13. Later, we will see that J1 and J2 are actually a cokernel pair of F in Lens .
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Proof that G preserves epis. Let E be an epic lens, and J1 and J2 the unique lenses

above the cokernel pair of GE from Proposition 5.12. As J1 �E = J2 �E and E is epic, actually

J1 = J2, and so GJ1 = GJ2. But GJ1 and GJ2 are the cokernel pair of GE, so GE is also epic. ⇤

Corollary 5.14. Let F be a lens. Then the following are equivalent:

(1) F is epic,

(2) GF is surjective on objects,

(3) GF is surjective on morphisms.

Proof. Chollet et al. [8, Proposition 4.15] showed that (2) and (3) are equivalent, and

imply (1). Suppose that F is epic. As G preserves epis (Theorem 5.9), the functor GF is also

epic. By Proposition 5.10, GF is surjective on objects. ⇤

Proposition 5.15. Epic lenses are proxy pullback stable.

Proof. Consider the proxy-pullback square in Lens depicted below.

D B

A C

F

E PPB E

F

Suppose that E is epic. Let A 2 |A|. As E is surjective on objects, there is a B 2 |B| such that

EB = FA. As the square of get functors is a pullback square in Cat , there is a unique D 2 |D|
such that ED = A and FD = B. Hence E is surjective on objects, and thus epic. ⇤

Remark 5.16. As image factorisations in Lens come from the (epi, mono) factorisation system

and the epis and monos in Lens are proxy-pullback stable, so are the image factorisations.



CHAPTER 6

Coequalisers of lenses

In this chapter, we study the coequalisers in Lens. We will see in Section 6.1 that they

are, in general, not so well behaved—not all parallel pairs of lenses have coequalisers and the

forgetful functor from Lens to Cat neither preserves nor reflects them. We will, however, obtain

two surprising results about classes of coequalisers in Lens that do exist and lie over coequalisers

in Cat . The first is Theorem 6.12, which says that Lens has pushouts of monic lenses with

discrete opfibrations. The second is Corollary 6.21, which says that every epic lens is proxy

e↵ective, that is, coequalises its proxy kernel pair. Our proofs of Theorem 6.12 and Corollary 6.21

both depend on Theorem 6.6—a general result about the coequalisers that are actually reflected

by G. Important corollaries of Theorem 6.12 and Corollary 6.21 include

• that every monic lens is e↵ective;

• that the classes of all monos, all e↵ective monos, all regular monos, all strong monos and all

extremal monos in Lens coincide;

• that the classes of all epis, all proxy-e↵ective epis, all regular epis, all strong epis and all

extremal epis in Lens coincide;

• that all lenses that are both monic and epic are isomorphisms; and

• that the orthogonality conditions for the (epi, mono) factorisation system on Lens hold.

Remark 6.1. We say that a morphism e : B ! C coforks a pair of morphisms f1, f2 : A! B if

e � f1 = e � f2. Some authors would use the verb coequalise where we use the verb cofork. Unlike

those authors, we say that e coequalises f1 and f2 only when e is a universal cofork of f1 and f2.

6.1. Non-existence, non-preservation and non-reflection of coequalisers

Recall that Cat has all coequalisers. Shortly, we will see examples of how coequalisers in

Lens are not so well behaved. The following proposition, which gives necessary conditions for a

cofork of lenses to be a coequaliser, will be helpful.

Proposition 6.2. Let F1, F2 : A! B be lenses with coequaliser E : B! C in Lens. Then

(1) for each cofork G : B ! D of F1 and F2, GB
d = E

B
EG

B
d for all B 2 |B| and all

d 2 D(GB, ⇤); and
(2) in particular, E is the unique lens above GE that coforks F1 and F2.

Proof. For (1), if G : B! D coforks F1 and F2, then there is a lens H : C! D such that

G = H � E, and so G
B
d = E

B
H

EB
d = E

B
EE

B
H

EB
d = E

B
EG

B
d. For (2), if G : B! C is a

lens above GE that coforks F1 and F2, then, for each B 2 |B| and each c 2 C(EB, ⇤), we have

that G
B
c = E

B
EG

B
c = E

B
GG

B
c = E

B
c, and so G = E. ⇤

36
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The first example shows that Lens does not have all coequalisers, nor does G reflect them.

Example 6.3. Let A and B be the categories generated respectively by the following graphs.

Y1 X Y2

Y

f1 f2

f

Y
0
1 X

0
Y

0
2

f
0
1 f

0
2

Let F1, F2 : A! B be the unique lenses that both send X to X
0, Y1 to Y

0
1 , Y2 to Y

0
2 , and such

that F1Y = Y
0
1 , F1

X
f
0
1 = f1, F2Y = Y

0
2 , and F2

X
f
0
2 = f2. Let G : B! 2 be the unique functor

that sends X 0 to 0, and both Y
0
1 and Y

0
2 to 1; G coequalises GF1 and GF2 in Cat . There are only

two lens structures on G that cofork F1 and F2 in Lens ; one is determined by G1
X

0
u = f

0
1 and

the other by G2
X

0
u = f

0
2. By Proposition 6.2, neither G1 nor G2 coequalises F1 and F2. Thus G

does not reflect the coequaliser G of GF1 and GF2.

Actually F1 and F2 do not have a coequaliser in Lens. Assume that E : B ! C is such

a coequaliser. Then Ef
0
1 = EF1f = EF2f = Ef

0
2. As G1 coforks F1 and F2, there is a lens

H : C ! 2 such that G1 = H � E. As HEX
0 = G1X

0 6= G1Y
0
1 = HEY

0
1 , we must have

EX
0 6= EY

0
1 . Hence EX

0 and EY
0
1 are distinct objects of the image of E, and idEX0 , Ef

0
1

and idEY
0
1

are distinct morphisms of the image of E. As E is a coequaliser, it is epi, and so,

by Corollary 5.14, its image is all of C. Thus GH is an isomorphism in Cat , and so H is an

isomorphism in Lens . Hence G1 also coequalises F1 and F2, which is a contradiction.

There are even parallel pairs of lenses for which the coequaliser of their get functors has a

unique lens structure that coforks them, and yet does not coequalise them.

Example 6.4. Let A, B and C be the preorded sets generated by the graphs

Z1 X Y Z2

Z

h h2

fh1 g

Z
0
1 X

0
Y

0
Z

0
2

h
0
2

f
0h

0
1 g

0

X
00

Y
00

Z
00

h
00

f
00

g
00

respectively. Let F1, F2 : A ! B be the unique lenses that both send X to X
0, Y to Y

0, Z1

to Z
0
1, Z2 to Z

0
2, and such that F1Z = Z

0
1, F1

X
h
0
1 = h1 and F2Z = Z

0
2. Let E : B ! C be the

unique lens that sends X
0 to X

00, Y 0 to Y
00, and both Z

0
1 and Z

0
2 to Z

00. Then GE coequalises

GF1 and GF2 in Cat , and E coforks F1 and F2 in Lens . However, E does not coequalise F1 and

F2 in Lens . Indeed, if G : B! 2 is the unique lens that sends X 0 to 0, all of Y 0, Z 0
1 and Z

0
2 to 1,

and for which G
X

0
u = h

0
1, then E

X
0
EG

X
0
u = E

X
0
Eh

0
1 = E

X
0
h
00 = h

0
2 6= h

0
1 = G

X
0
u.

The final example shows that G does not preserve coequalisers. It is also an example of a

parallel pair of lenses whose get functors’ coequaliser has no lens structure that coforks them.

Example 6.5. Let A be the preordered set generated by the graph

Y1 X Y2
f1 f2

Let I : A! A denote the identity lens, and let S : A! A be the unique lens that maps X to

X, Y1 to Y2 and Y2 to Y1. The coequaliser of GI and GS in Cat is the unique functor A ! 2
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that sends X to 0 and both Y1 and Y2 to 1. Recall that 1 is terminal in Lens [8]. We claim

that the coequaliser of I and S in Lens is the unique lens E : A ! 1. Let G : A ! C be a

lens that coforks I and S in Lens. Let f = Gf1. Then f = Gf1 = GIf1 = GSf1 = Gf2. As

G
X
f 2 A(X, ⇤), it is one of f1, f2 and idX . If GX

f = f1, then

f1 = I
X
f1 = I

X
G

X
f = (G � I)Xf = (G � S)Xf = S

X
G

X
f = S

X
f1 = f2,

which is a contradiction. We get a similar contradiction if GX
f = f2. By elimination, GX

f = idX ,

and so f = GG
X
f = G idX = idGX . The image of G thus consists of the object GX and the

morphism idGX . If H : 1! C is a lens such that G = H � E, then H must send 0 to GX, and

this uniquely determines H. As the image of any lens, in particular G, is an out-degree-zero

subcategory of its target category, this definition of H does indeed give a lens, and G = H � E.

Of course, the factorisation G = H � E is really the image factorisation of G from Remark 5.8.

6.2. Coequalisers which are reflected

Although the counterexamples above suggest that coequalisers in Lens have little relation to

those in Cat , we will see in Theorem 6.12 and Corollary 6.21 two classes of coequalisers in Lens

which do lie over coequalisers in Cat . The following theorem, a partial converse to Proposition 6.2,

reduces checking the coequaliser property in these cases to checking that (1) below always holds.

Theorem 6.6. Let E : B! C cofork F1, F2 : A! B in Lens. Suppose that GE coequalises

GF1 and GF2 in Cat. Then E coequalises F1 and F2 in Lens if and only if, for all lenses

G : B! D that cofork F1 and F2 in Lens, all B 2 |B| and all d 2 D(GB, ⇤), we have

G
B
d = E

B
EG

B
d. (1)

In the proof of the following lemma and again, later, in the proof of Lemma 6.11, we use the

induction principle for the equivalence relation ' on a set S generated by a binary relation R

on S. Explictly, the induction principle is given by the following logical formula.

8P x0 y0.

2

6666666664

x0 ' y0

^ 8x y. x R y =) P (x, y)

^ 8x. P (x, x)

^ 8x y. [x ' y ^ P (x, y)] =) P (y, x)

^ 8x y z. [x ' y ^ P (x, y) ^ y ' z ^ P (y, z)] =) P (x, z)

3

7777777775

=) P (x0, y0) (2)

Lemma 6.7. Let F1, F2 : A! B be lenses. Let E : B! C be a cofork of F1 and F2 in Lens,

and suppose that GE coequalises GF1 and GF2 in Cat. Let G : B! D be a lens that coforks F1

and F2 in Lens, and let H : C! D be the unique functor such that GG = H � GE. Then there

is a unique lens structure on H such that, for all B 2 |B| and all d 2 D(GB, ⇤), we have

H
EB

d = EG
B
d. (3)
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Proof. For each C 2 |C|, as GE is epic, there is a B 2 |B| such that EB = C. Hence,

we may define H
C using (3), so long as, for all B1, B2 2 |B|, if EB1 = EB2 then, for all

d 2 D(EB1, ⇤), we have EG
B1d = EG

B2d. Let ' be the smallest equivalence relation on |B|
such that F1A ' F2A for all A 2 |A|. As GE coequalises GF1 and GF2 in Cat , we have [5,

Proposition 4.1], for all B1, B2 2 |B|, that EB1 = EB2 if and only if B1 ' B2. We proceed

using the induction principle in (2). The proof obligations from the reflexivity, symmetry and

transitivity axioms for ' hold as = is an equivalence relation. For the remaining one, for all

A 2 |A| and all d 2 D(F1A, ⇤), we have

EG
F1Ad = EF1F1

A
G

F1Ad = (E � F1)(G � F1)
A
d

= (E � F2)(G � F2)
A
d = EF2F2

A
G

F2Ad = EG
F2Ad.

Define H
C using (3). It remains to check the lens axioms. For all C 2 |C|, there is a B 2 |B|

such that EB = C, and H
C idHC = EG

B idGB = E idB = idC ; so PutId holds. For all C 2 |C|,
all d 2 D(HC, ⇤) and all d0 2 D(tgt d, ⇤), there is a B 2 |B| such that EB = C, and

H
C(d0 � d) = EG

B(d0 � d) = E
�
G

B
0
d
0 �GB

d
�

= EG
B

0
d
0 � EG

B
d = H

C
0
d
0 �HC

d,

where B
0 = tgtGB

d and C
0 = EB

0; so PutPut holds. For all C 2 |C| and all d 2 D(HC, ⇤),
there is a B 2 |B| such that EB = C, and HH

C
d = HEG

B
d = GG

B
d = d; so PutGet holds. ⇤

Proof of Theorem 6.6. We proved the only if direction in Proposition 6.2. For the if

direction, suppose, for all lenses G : B! D that cofork F1 and F2, that (1) always holds. We

must show that E is the universal cofork of F1 and F2 in Lens. Let G : B ! D be another

cofork of F1 and F2 in Lens. Suppose that there is a lens H : C ! D such that G = H � E.

Then GG = GH � GE, and so GH is the unique functor that composes with GE to give GG.

Let C 2 |C| and d 2 D(HC, ⇤). As GE is epic, there is a B 2 |B| such that EB = C.

Then H
C
d = EE

B
H

C
d = E(H � E)Bd = EG

B
d. Hence H is uniquely determined. Now let

H : C ! D be the lens defined as in Lemma 6.7. For all B 2 |B| and all d 2 D(GB, ⇤), we

have G
B
d = E

B
EG

B
d = E

B
H

EB
d = (H � E)Bd, and so G = H � E. ⇤

Corollary 6.8. Let E : B ! C cofork F1, F2 : A ! B in Lens. Suppose that GE coequalises

GF1 and GF2 in Cat. If E is a discrete opfibration then it coequalises F1 and F2 in Lens.

Proof. Apply Theorem 6.6 and the GetPut axiom of the discrete opfibration E. ⇤

6.3. Pushouts of discrete opfibrations along monos

In the proof that G preserves epis (Theorem 5.9), we used the well-known result that cosieves

are pushout stable to explain why the pushout in Cat of the get functors of a span of monic

lenses lifts uniquely to a commutative square in Lens ; this lifted square is actually a pushout

square in Lens . In this section, we will show, more generally, that Lens has pushouts of discrete

opfibrations along monics, and that G creates these pushouts. In what follows, we use square

brackets for equivalence classes of elements.
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Fritsch and Latch [15, Proposition 5.2] explicitly construct the pushout in Cat of a functor

along a full monic functor. We obtain the following simplification of this construction by

specialising to pushouts along cosieves, and recalling that the image of a cosieve is out-degree-zero.

Proposition 6.9. Let F : A! C be a functor and J : A! B be a cosieve. Then

A B

C D

J

F F

J

is a pushout square in Cat and J is a cosieve, where D, F and J are defined as follows:

• Object set:

|D| = |C| t
�
|B| \ |A|

�

• Hom-sets: for all C1, C2 2 |C| and all B1, B2 2 |B| \ |A|,

D(C1, C2) = C(C1, C2) D(C1, B2) = ;

D(B1, B2) = B(B1, B2) D(B1, C2) =
�

A2|A|

C(FA,C2)⇥B(B1, A)
��
⇠

where ⇠ is the equivalence relation on
A2|A| C(FA,C2)⇥B(B1, A) generated by

(c, a � b) ⇠ (c � Fa, b)

for all A1, A2 2 |A|, all b 2 B(B1, A1), all a 2 A(A1, A2) and all c 2 C(FA2, C2).

• Composition: for all B1, B2, B3 2 |B| \ |A|, all A 2 |A|, all C1, C2, C3 2 |C|, all b1 2
D(B1, B2), all b2 2 D(B2, B3), all a 2 D(B2, A), all c 2 D(FA,C2), all c1 2 D(C1, C2) and

all c2 2 D(C2, C3),

b2 �D b1 = b2 �B b1 [(c, a)] �D b1 = [(c, a �B b1)]

c2 �D c1 = c2 �C c1 c2 �D [(c, a)] = [(c2 �C c, a)]

• Identity morphisms: same as in B and C.

• Injections: the functor J : C! D is the obvious inclusion of C as a full subcategory of D;

the functor F : B! D is defined, for all B,B
0 2 |B| \ |A|, all A,A0 2 |A|, all b 2 B(B,B

0),

all b0 2 B(B,A) and all a 2 B(A,A0), as follows:

FB = B FA = FA

Fb = b Fb
0 = [(idFA, b

0)] Fa = Fa

Theorem 6.10. In Cat, discrete opfibrations are stable under pushout along cosieves.

Lemma 6.11. Let F : A ! C be a discrete opfibration, let J : A ! B be a cosieve, let

B 2 |B| \ |A| and let C 2 |C|. Then, for all A1, A2 2 A, all b1 2 B(B,A1), all b2 2 B(B,A2),

all c1 2 C(FA1, C) and all c2 2 C(FA2, C), if (c1, b1) ⇠ (c2, b2) then F
A1c1 � b1 = F

A2c2 � b2.
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Proof. We proceed by induction, using the induction principle for ⇠ in (2). The proof

obligations from the reflexivity, symmetry and transitivity axioms for ⇠ hold because = is an

equivalence relation. For the remaining proof obligation, for all A1, A2 2 |A|, all b 2 B(B,A1),

all a 2 A(A1, A2) and all c 2 C(FA2, C), we have F
A1Fa = a as F is a discrete opfibration,

and so F
A2c � (a � b) = F

A2c � FA1Fa � b = F
A1(c � Fa) � b. ⇤

Proof of Theorem 6.10. With the notation of Proposition 6.9, suppose that F is a

discrete opfibration. We must show that F is a discrete opfibration. Let B 2 |B| and

d 2 D(FB, ⇤).

Suppose that B 2 |A|. Then FB = FB, and d 2 C(FB, ⇤). As F is a discrete opfibration,

there is a unique a 2 A(B, ⇤) with d = Fa. But A(B, ⇤) = B(B, ⇤) as A is out-degree-zero

in B; also Fa = Fa for each a 2 B(B, ⇤). Hence there is a unique a 2 B(B, ⇤) with d = Fa.

Suppose that B and tgt d are in |B| \ |A|. Then FB = B, d 2 B(B, ⇤) and Fd = d. As F is

injective on the morphisms of B not in A, d is the unique morphism in B(B, ⇤) mapped by F to d.

Otherwise, B 2 |B| \ |A| and tgt d 2 |C|. Then FB = B, and d = [(c1, b1)] for some

A1 2 |A|, some b1 2 B(B,A1) and some c1 2 C(FA1, C), where C = tgt d. For uniqueness

of lifts, suppose that b2 2 B(B, ⇤) is such that d = Fb2. Let A2 = tgt b2. Then A2 2 |A|
as FA2 = tgt d = C, and so Fb2 = [(idC , b2)]. As d = Fb2, we have (idC , b2) ⇠ (c1, b1). By

Lemma 6.11, b2 = F
A2 idC �b2 = F

A1c1 � b1; this determines b2. For existence of lifts, note that

F (FA1c1 � b1) = [(idC , F
A1c1 � b1)] = [(FF

A1c1, b1)] = [(c1, b1)] = d. ⇤

Theorem 6.12. The functor G creates pushouts of monic lenses with discrete opfibrations.

Proof. Using the notation of Proposition 6.9, suppose that F is a discrete opfibration.

Then F is also a discrete opfibration (Theorem 6.10). Let JB : B! BtC and JC : C! BtC

be the coproduct injection functors. Coproduct injections in Cat are always discrete opfibrations,

as is the coproduct copairing of any two discrete opfibrations. Hence JB, JC and [J, F ] are all

discrete opfibrations. As the composite of two discrete opfibrations is a discrete opfibration,

so is JB � J and JC � F . So far, we know that [J, F ] is the coequaliser in Cat of JB � J and

JC � F , all of these functors have canonical lens structures as they are discrete opfibrations, and

[J, F ] coforks JB � J and JC � F in Lens . As [J, F ] is a discrete opfibration, the conditions of

Theorem 6.6 are satisfied, and so [J, F ] coequalises JB � J and JC � F in Lens. As G creates

coproducts [8], it follows that J and F exhibit D as the pushout of J and F in Lens . ⇤

One might hope that the above result generalises to pushouts of two discrete opfibrations, or

of arbitrary lenses along monos; this is not the case. In the following example, we construct two

discrete opfibrations whose pushout square in Cat does not lie under a commuting square in Lens .

Example 6.13. Let A and B be the categories generated respectively by the following graphs.

Y
0
1 X

0
Y

0
2

Y
00
1 X

00
Y

00
2

f
0
1 f

0
2

f
00
1 f

00
2

Y1 X Y2
f1 f2
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Let F : A! B be the unique functor that sends both X
0 and X

00 to X, both Y
0
1 and Y

00
1 to Y1,

and both Y
0
2 and Y

00
2 to Y2. Let G : A! B be the unique functor that sends both X

0 and X
00 to

X, both Y
0
1 and Y

00
2 to Y1, and both Y

0
2 and Y

00
1 to Y2. Both F and G are discrete opfibrations.

Their pushout in Cat is 2; the pushout injections F ,G : B ! 2 are both the unique functor

that sends X to 0, and both Y1 and Y2 to 1. There are two di↵erent lens structures on this

functor; one lifts the unique morphism u of 2 to f1, the other lifts it to f2. This gives four

di↵erent combinations of lens structures on F and G. Assume, for a contradiction, that one

of these combinations satisfies FG = GF in Lens. As G
X

0
F

X
u = F

X
0
G

X
u, we must have

F
X
u = G

X
u. If FX

u = f1, then G
X

00
F

X
u = G

X
00
f1 = f

0
2 and F

X
00
G

X
u = F

X
00
f1 = f

0
1 6= f

0
2,

which is a contradiction. If FX
u = f2, we obtain a similar contradiction.

Next we give an example of a lens and a cosieve where the pushout of the get functor of the

lens along the cosieve does not have a lens structure (incidentally this lens and cosieve do not

have a pushout in Lens).

Example 6.14. Let B and D be the preordered sets generated by the graphs

X W Y

Z2 Z1 Z3

s

f g

t

X
0

W
0

Y
0

Z
0

s
0

f
0

g
0

t
0

respectively. Let A be the out-degree-zero subcategory of B on the objects Z1, Z2 and Z3,

and let J : A ⇢ B be the inclusion lens. As 1 is terminal in Lens [8], there is a unique lens

F : A ! 1. By Proposition 6.9, the pushout of GF along GJ in Cat is the unique functor

F : B! D that maps W to W
0, X to X

0, Y to Y
0, and all of Z1, Z2 and Z3 to Z

0. The functor

F has no lens structure, otherwise we could derive the contradiction

s � f = F
X
s
0 � FW

f
0 = F

W (s0 � f 0) = F
W (t0 � g0) = F

Y
t
0 � FW

g
0 = t � g.

From Theorem 6.12, every monic lens has a cokernel pair. Actually, using the epi-mono

factorisation, every lens has a cokernel pair, namely, the cokernel pair of its mono factor.

Proposition 6.15. Every monic lens is e↵ective (i.e. equalises its cokernel pair).

Proof. Let M : A ! B be a monic lens, and let J1, J2 : B ! CokerM be its cokernel

pair. Based on Proposition 6.9, if B 2 |B| is such that J1B = J2B, then B 2 |A|; and similarly

for morphisms of B. In particular, the image of any lens which forks J1 and J2 is contained

in A, and thus its corestriction to A is the unique comparison lens. ⇤

Corollary 6.16. In Lens, the classes of all monos, e↵ective monos, regular monos, strong

monos and extremal monos coincide.

Corollary 6.17. Every lens that is both epic and monic is an isomorphism.
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6.4. Regular epic lenses

In this section, we show that all epis in Lens are regular. This implies that the epic lenses

form another class of coequalisers in Lens . For contrast, recall that not all epis in Cat are regular.

Example 6.18. In Example 5.11, we saw that the functor J : 2! I is epic. It is, however, not

a regular epi. Indeed, if J coforks F1, F2 : A! 2, then F1 = F2 as J is monic, and so id2 is the

coequaliser of F1 and F2, but 2 and I are not isomorphic.

Proposition 6.19. The get functor of every epic lens is an e↵ective epi in Cat.

A functor E : B ! C is surjective on composable pairs if for each composable pair (c, c0)

of C, there is a composable pair (b, b0) of B such that Eb = c and Eb
0 = c

0; such functors are

necessarily also surjective on objects and morphisms. If E : B ! C is an epic lens, then GE

is surjective on composable pairs; indeed, if (c, c0) is a composable pair of C, then there is a

B 2 |B| such that EB = src c, and (EB
c, E

tgtEB
c
c
0) is a composable pair above (c, c0). Hence it

su�ces to prove the following lemma.

Lemma 6.20. All functors that are surjective on composable pairs are e↵ective epis in Cat.

Proof. Let E : B! C be a surjective-on-composable-pairs functor. Let F1, F2 : K! B be

a kernel pair of E. We must show that E coequalises F1 and F2. Let G : B! D cofork F1 and F2.

Suppose that there is a functor H : C ! D such that G = H � E. As E is surjective on

objects, for all C 2 |C| there is a B 2 |B| such that EB = C, and so HC = HEB = GB;

this equation determines H on objects. As E is surjective on morphisms, a similar equation

determines H on morphisms.

To define H : C! D with these equations, the values of GB and Gb should be independent

of the choice of B above C and b above c. For all C 2 |C| and all B,B
0 2 |B| such that

EB = EB
0 = C, we have GB = GF1hB, B

0i = GF2hB, B
0i = GB

0, where hB, B
0i 2 |K| comes

from the pullback property; hence the object map of H is well defined. Its morphism map is

similarly also well defined.

Define H with the above equations. We must show that H is a functor. For all C 2 |C|,
there is a B 2 |B| such that EB = C, and H idC = G idB = idGB = idHC ; thus H preserves

identities. For all composable pairs c and c
0 of C, there is a composable pair b and b

0 of B such

that Eb = c and Eb
0 = c

0, and H(c0 � c) = G(b0 � b) = Gb
0 �Gb = Hc

0 �Hc; thus H preserves

composites. By construction, G = H � E. ⇤

Corollary 6.21. Every epic lens coequalises its proxy kernel pair, and so is regular.

Proof. Let E : B! C be an epic lens. Let F1, F2 : K! B be a proxy kernel pair of E in

Lens . By Proposition 6.19, GE coequalises GF1 and GF2 in Cat . Let G : B! D be a lens that

coforks F1 and F2, let B 2 |B|, let d 2 D(GB, ⇤), and let C = EB. Then

(G � F1)
hB,Bi

d = F1
hB,Bi

G
B
d =

⌦
G

B
d, E

B
EG

B
d
↵
,

and similarly (G � F2)hB,Bi
d =

⌦
E

B
EG

B
d, G

B
d
↵
. As G coforks F1 and F2, it follows that

G
B
d = E

B
EG

B
d. By Theorem 6.6, E coequalises F1 and F2 in Lens . ⇤
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Corollary 6.22. In Lens, the classes of all epis, proxy e↵ective epis, regular epis, strong epis

and extremal epis coincide.

In Remark 5.8, we promised a proof of the orthogonality conditions for the (epi, mono)

factorisation system on Lens. By Corollary 6.22, every epic lens is a strong epi. Conversely,

as Lens has equalisers [8], each lens that is left orthogonal to all monic lenses is an epic lens.

Hence the epic lenses form the class of morphisms in Lens that are left orthogonal to all monic

lenses. Similarly, every monic lens is a strong mono by Corollary 6.16. To deduce the other

orthogonality condition, it remains to prove the following proposition.

Proposition 6.23. Let F : A! B be a lens such that every epic lens is left orthogonal to F .

Then F is monic.

Proof. Let G1, G2 : C! A be lenses such that F �G1 = F �G2. Let F = M � E be the

factorisation of F from Proposition 5.7. As E ? F , there is a unique lens H : ImF ! A such

that H �E = idA and M = F �H. As M �E �G1 = F �G1 = F �G2 = M �E �G2 and M is

monic, actually E �G1 = E �G2. Thus G1 = H � E �G1 = H � E �G2 = G2. ⇤



CHAPTER 7

Conclusion

As noted in the introduction, a serious study of the categorical properties of the category Lens

of asymmetric (delta) lenses had not been attempted until the work of Chollet et al. [8] and the

work in this thesis. The proxy pullback in Lens , a notion introduced by Johnson and Rosebrugh

to describe composition of symmetric (delta) lenses when viewed as spans of asymmetric ones [17],

ended up playing an important role in the proofs of several of these categorical properties. These

proofs were often inspired by how the real pullback is used to prove these properties of other

categories. Naturally, questions about the other ways in which the proxy pullback might behave

like a real pullback arose, and these led to the rest of the work in this thesis.

In the remainder of this chapter, we recall the important contributions of this thesis, and

suggest ideas for how this work may be continued. Substantial progress has already been made

for many of these ideas.

7.1. Proxy pullbacks

In Chapter 3, we gave a new perspective on proxy pullbacks in Lens—a proxy pullback is a

compatible square of lenses whose get functors form a pullback square in Cat . We also proved

several properties of proxy pullbacks that mirror those of real pullbacks, including

• that compatible-lens transformations between lens cospans extend uniquely to compatible-

lens transformations between chosen proxy pullbacks of the cospans,

• that proxy pullbacks are unique up to unique span isomorphism,

• a proxy analogue of the pullback pasting lemma, and

• that proxy kernel pairs are equipped with canonical symmetry and transitivity lenses.

All of the major results in Chapter 3, including those listed above, were proved in terms of

diagrams of compatible squares. This approach ultimately relied on

• the ability to paste compatible squares of functors and cofunctors horizontally and vertically,

• the fact that lenses and discrete opfibrations may be equivalently defined in terms of

compatible squares of functors and cofunctors of a certain shape, and

• Theorem 3.6, which said that the functor hS, Ti : CofSq ! Cat ⇥ Cat creates limits.

A reader familiar with the notion of a double category has likely already deduced that categories,

functors, cofunctors and compatible squares are the objects, arrows, proarrows and cells of a flat

strict double category Cof ; the two ways to paste compatible squares of functors and cofunctors

together give the two kinds of cell composition. Inspired by this observation, we may define the

category Lens C of lenses in a flat strict double category C to be the category whose objects

45
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are the objects of C and whose morphisms (p, g) : X ! Y are the cells in C of shape

X Y

Y Y

g

p ) .

One may then define the notion of compatible square of lenses in C using the cells in C for

the compatibility conditions, and from this, also define the notion of proxy pullback in terms

of pullbacks in the category C0 of objects and arrows in C. If we also ask that the functor

hS, Ti : C1 ! C0⇥C0 creates limits, where S and T are the source and target functors from the

category C1 of proarrows and cells of C to the category C0 of objects and arrows of C, then all

of the major results about proxy pullbacks in the remainder of Chapter 3 should generalise to

this setting with essentially the same proofs.

It is also interesting to note that the companion pairs in Cof are the discrete opfibrations

whilst the conjoint pairs in Cof are the bijective-on-objects functors. Clarke [9] has observed

that every cofunctor is given, essentially uniquely, by a span of functors whose left leg is a

bijective-on-objects functor and whose right leg is a discrete opfibration. Viewed from our

double category perspective, Cof has what are called e↵ective tabulators by Paré [26] and strong

tabulators by Lambert [23]; such tabulators are defined in terms of the companions and conjoints

of the ambient double category. Thus if our double category C has e↵ective tabulators then

the generalised cofunctors have such a representation as a span whose left leg is a generalised

bijective-on-objects functor and whose right leg is a generalised discrete opfibration.

Many approaches to generalised category theory fit into the framework of monads and monad

morphisms in a (pseudo) double category; monads give the appropriate notion of generalised

category and monad morphisms give the appropriate notion of generalised functor. For category

theory internal to a category C with pullbacks, consider the double category Span C of objects,

morphisms and spans in C. For category theory enriched in a nice-enough monoidal category V ,

consider the double category Mat V of sets, functions and V-valued matrices. Finally, for category

theory internal to a su�ciently nice monoidal category V , consider the double category Comod V
of comonoids, comonoid morphisms and bicomodules in V [1]. Less well known is that for a

double category D with companions, there is a second kind of morphism between monads, for

which the author proposes the name monad retromorphism, that is best defined as a retrocell [27]

between the underlying proarrows of the monads that preserves the unit and multiplication

cells of the monads in the appropriate way. These monad retromorphisms give the appropriate

notion of generalised cofunctor. For this reason, and due to the common confusion between

the notions of cofunctor and contravariant functor, the author also proposes that we rename

cofunctor to retrofunctor, although the author is also aware that it is perhaps too late for this

new name to be widely adopted. Actually, for any double category D with companions, there is

a flat strict double category Mnd D of monads, monad morphisms and monad retromorphisms1;

the cells in this double category give the appropriate generalised notion of compatible square.

1The double category Mnd D is a sub-double-category of the one defined by Fiore, Gambino, and Kock [13].
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The generalised lenses in Mnd D for a double category D with companions more closely

resemble the primitive notion of lens than the generalised lenses in some arbitrary flat strict

double category C. Indeed, letting D be Span C, Mat V or Comod V , we obtain the right notion

of lens in each of the corresponding generalised category theories. For a more exotic example,

consider the flat strict double category Fltr of sets, functions and Kleisli arrows of the filter

monad F on Set , where a cell

X Y

X
0

Y
0

N

f

) M

f
0

exists if and only if (Ff 0)Nx ◆Mfx for all x 2 X. The double category Mnd Fltr is then the

flat strict double category Top of topological spaces, continuous maps and open maps, where

a cell exists exactly when the square of functions underlying its boundary commutes. Notice

that preimages for continuous maps and direct images for open maps are like the action of

functors and cofunctors on morphisms; this is not surprising because the full subcategory of Cat

spanned by the preorders is isomorphic to that of the category Top of topological spaces and

continuous maps spanned by the Alexandrov-discrete spaces. A generalised lens in Top is then

an open continuous map. The proxy pullback of a cospan of open continuous maps is given by

the pullback in Top of the cospan regarded as merely a cospan of continuous maps; the pullback

projections turn out to also be open maps. It appears as though Top does not have e↵ective

tabulators. Understanding the conditions on a double category D with companions such that

the source and target functors of Mnd D satisfy the limit creation property described earlier,

and also the conditions on D such that Mnd D has e↵ective tabulators, is ongoing work.

Taking seriously the idea that compatibility is a generalised notion of commutativity for

mixed diagrams of a certain shape, a natural question to ask is whether there is a useful notion

of compatibility for arbitrarily shaped mixed diagrams. This is another direction for future work.

7.2. Universal properties of the proxy pullback

In Chapter 4, we established necessary and su�cient conditions for when a lens span that

forms a commuting square with a lens cospan has a comparison lens to a proxy pullback of the

cospan. These conditions involved the new notions of sync minimality and independence, as well

as the notion of compatibility from Chapter 3. They enabled us to describe exactly when a proxy

pullback is a real pullback, and this description simplified even further when merely considering

proxy products. A search for such a simplified description for general proxy pullbacks is ongoing.

In order to lift the theory of Chapter 4 to the setting of generalised lenses as described in

the previous section, a first step would be to obtain categorical characterisations of the notions

of sync minimality and independence, perhaps in terms of some universal property. Whilst the

author is yet to discover a compelling such characterisation of independent lens spans, some

interesting progress has already been made for sync minimal ones. The key observation is that

being sync minimal is really a property of the put cofunctors of a lens span, and that the process

of taking the sync minimal core actually gives a factorisation of this span of put cofunctors.
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Spivak and Niu [30] show that Cof has products; the explicit description of these products is

unfortunately rather complicated—the objects of the product of two categories are certain pairs

of rooted infinite trees whose edges are morphisms from either category, and the morphisms

out of such an object are the paths in either tree from its root. It turns out that a cofunctor

span is sync minimal exactly when its product pairing in Cof has surjective lifting functions.

We will call a cofunctor with surjective lifting functions cofull and one with injective lifting

functions cofaithful. There is a well-known factorisation system on Cof whose left class is the

bijective-on-objects cofunctors and whose right class is the discrete opfibrations [10], which,

in this context, we might also call the cofully cofaithful cofunctors. The factorisation system

on Cof that we are actually interested in has as its left class the cofaithful bijective-on-objects

cofunctors, and its right class the cofull cofunctors; this factorisation of the put cofunctor of

a lens coincides with the other factorisation. If we factor the product pairing of a cofunctor

span using this factorisation system, then the sync-minimal core of the cospan is obtained by

composing the second factor with the appropriate product projection cofunctors.

We have already recalled that symmetric lenses between two categories correspond to the

equivalence classes of a certain equivalence relation on asymmetric lens spans between the two

categories [17]. Clarke, with a di↵erent definition of symmetric lens, constructed an adjoint triple2

SymLens(A,B) SpanLens(A,B)

L

`
`

R

M

between his category SymLens(A,B) of symmetric lenses from A to B and the category

SpanLens(A,B) whose objects are lens spans from A to B and whose morphisms are functors

satisfying certain compatibility conditions [9]. The comonad L �M on SpanLens(A,B) induced

by the adjoint triple appears to be closely related to our process that sends a lens span to

its sync minimal core. Additionally, as L is fully faithful, we may think of those lens spans

in the image of L as representing symmetric lenses. It might thus be reasonable to think of

the sync-minimal lens spans as being the symmetric lenses, an idea that is reinforced by the

interpretation of the sync-minimal property that was given in Section 4.1.

The original proposal for the Categories of Maintainable Relations project of the Applied

Category Theory Adjoint School 2020, which did not end up being the actual focus of the

project, was to work out how to view symmetric lenses as some kind of generalised relations

in Lens . A relation in a category from object X to object Y is usually defined as a jointly monic

span from X to Y . A regular category [4] is a finitely complete category with a pullback-stable

regular-epi mono factorisation system. Relations in regular categories are particularly nice as

they form the morphisms of a bicategory; the composite of two relations is the image (from the

factorisation system) of their composite as spans (from the pullback). Given a not-necessarily-

proper orthogonal factorisation system (E ,M ) on a category with products, an M -relation

from X to Y is a span from X to Y whose product pairing is in M . If the factorisation system

is pullback-stable, then the M -relations still form the morphisms of a bicategory with nice

2Clarke’s functor M is not to be confused with our M that sends a lens span to its sync-minimal core.
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properties [22, 24, 28], where composition of M -relations is defined similarly to that of relations

in a regular category. As Cof is finitely complete, we may consider the M -relations in Cof for

the factorisation system where E is the class of cofaithful bijective-on-objects cofunctors and

M is the class of cofull cofunctors. From our earlier discussion, these M -relations are exactly

the sync-minimal cofunctor spans. It would be interesting to work out what the composition

of such M -relations is, as the pullback in Cof is very di↵erent to the proxy pullback in Lens.

Returning to the original question of whether symmetric lenses may be viewed as some kind of

relations in Lens , we seem to need a further generalisation of the notion of internal relation as

the sync-minimal core of a lens span is not obtained from a factorisation system on Lens itself.

7.3. Categorical properties of the category of asymmetric lenses

In Chapters 5 and 6, the contents of which will appear in the Applied Category Theory 2021

conference proceedings [11], we studied several categorical properties of Lens including its monos

and epis, and its coequalisers. We gave a complete elementary characterisation of the monos and

epis in Lens , the monos being the unique lenses on cosieves and the epis being the surjective on

objects lenses. From this, we saw that Johnson and Roseburgh’s factorisation system on Lens [18]

is actually an epi-mono factorisation system. We also initiated a study of the coequalisers in

Lens. Despite Lens not having all coequalisers, nor the forgetful functor from Lens to Cat

preserving or reflecting them, we presented two interesting positive results. First, every epic

lens coequalises its proxy kernel pair. Second, Lens has pushouts of discrete opfibrations along

cosieves. Our characterisation of the epic lenses played a central role in the proof of both of these

results, and hopefully will enable future work to completely characterise the coequalisers in Lens .

Finding useful axiomatisations of pullback-like constructions is a nascent area of research.

Noteworthy attempts, all of which we have already mentioned, include Simpson’s local indepen-

dent products [29], Böhm’s relative pullbacks [6], and Bumpus and Kocsis’ proxy pushout [7]. A

good axiomatisation is one that is general enough to include many of the known examples, but spe-

cific enough to have a rich theory. Neither the notion of local independent product nor the notion

of relative pullback is general enough to include proxy pullbacks in Lens , although it is conceiv-

able that a small modification of either notion could include the sync-minimal proxy pullbacks. It

also appears as though the axiomatisation of proxy pushouts given by Bumpus and Kocsis is too

general to have a rich theory. One possible goal for an axiomatisation of proxy pullbacks would be

to have a theory of proxy-regular categories that mirrors the theory of regular categories. The cat-

egory Lens is an obvious example of such a proxy-regular category from which we may draw inspi-

ration; the category of topological spaces and open continuous maps is another likely candidate.
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