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Abstract

In this thesis, we provide a comprehensive introduction to and a detailed proof of
Chebotarev’s density theorem (for extensions of number fields). Our proof is unlike
typical modern proofs of Chebotarev’s theorem, which assume familiarity with class
field theory and, in particular, rely on Artin reciprocity. Instead, our proof is closer
in spirit to Chebotarev’s original proof. We begin by proving that Chebotarev’s
theorem holds for cyclotomic extensions of number fields, detouring into the realm
of analytic number theory with our study of the Weber L-functions. We then use
a method similar to Chebotarev’s field “crossing” technique to deduce the case of
Chebotarev’s theorem for abelian extensions of number fields from the case for
cyclotomic extensions. Finally, Deuring’s counting argument allows us to conclude,
from the case of Chebotarev’s theorem for cyclic (abelian) extensions of number
fields, that Chebotarev’s theorem does indeed hold in general.

Throughout this work, our aim is to present Chebotarev’s theorem in a manner
that is more accessible for students than standard treatments of this subject mat-
ter. With this goal in mind, we provide motivation, in the form of several concrete
examples supported with numerical data, for the study of Chebotarev’s theorem �
these examples include particular instances of Dirichlet’s theorem on prime num-
bers in arithmetic progressions and the Frobenius density theorem. Our thorough
introduction to the concepts from algebraic and analytic number theory that we
use, such as the notion of Frobenius elements, serves the same purpose. In addition,
and for this same reason, we include more detail in our proofs than is normally
provided in the texts that we follow.
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Symbols

Z+ Positive integers
N Non-negative integers
 |

S
Restriction of  to S

LH Subfield of L fixed by H
'(n) Euler totient function
�1 Trivial character
bG Character group of G
OK Ring of integers of K
NL

K(↵) Norm of ↵ 2 L relative to K
N(a) Absolute ideal norm of a
disc(K) Discriminant of the number field K
P (K) Non-zero prime ideals of OK
e(P|p) Ramification index of P over p
f(P|p) Inertial degree of P over p
Fp Residue field OK/p
D(P|p) Decomposition group (Definition 2.19)
I(P|p) Inertia group (Definition 2.22)⇥L/K

P

⇤
Frobenius element (Definition 2.25)�L/K

p

�
Frobenius class (Definition 2.28)⇥L/K

p

⇤
The single element in

�L/K
p

�
when L/K is abelian

(Remark 2.30)
�(A) Dirichlet density of A (Definition 2.34)
�sup(A) Upper Dirichlet density of A (Definition 2.44)
�inf(A) Lower Dirichlet density of A (Definition 2.44)⇥L/K

·

⇤
m

Artin map (Definition 3.20)
IK Group of fractional ideals of K
ClK Ideal class group of K
m = m0 ·m1 Modulus (Definition 3.27)
I
m
K Group of fractional ideals of K coprime to m

(Definition/Proposition 3.28)
ClmK Ray class group of K for the modulus m (Defini-

tion/Proposition 3.28)
hm
K Ray class number (Proposition 3.36)
⇥L/K

·

⇤
m

See Corollary 3.39
Lm
K(s,�) Weber L-function (Definition/Proposition 4.4)

`mK(s,�) Logarithm of Weber L-function (Definition 4.25)
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Chapter 1

Introduction

In 1837, Peter Gustav Lejeune Dirichlet (1805–1859) presented his paper Proof of
the theorem that any infinite arithmetic progression whose first term and difference
are integers without a common factor contains infinitely many primes1 [25, 26] to
the Akademie der Wissenschaften in Berlin. Using the analytic properties of his
L-series, today referred to as Dirichlet L-series or Dirichlet L-functions, Dirichlet
showed that the sum

P
1
p�

, taken over the primes p in the arithmetic progression

a, a+m, a+ 2m, · · ·

where a and m are coprime, is unbounded as � ! 1+, implying that the sum has in-
finitely many terms and thus that there are infinitely many such prime numbers [26,
p. 421]. This paper is widely recognised as the genesis of analytic number theory
� the application of analytic techniques to problems of number theoretic nature.

In November 1880, Ferdinand Georg Frobenius (1849–1917) communicated to
Ludwig Stickelberger and Richard Dedekind the results of his paper On relationships
between the prime ideals of an algebraic field and the permutations of its group [14],
which he published in 1896, after Dedekind published his theory of ideals in 1894.
In this paper, Frobenius made several contributions to number theory. Given a
polynomial with rational coefficients, to each prime number he associated a con-
jugacy class of the Galois group of this polynomial. Today, we call the conjugacy
class associated to a prime number p the Frobenius class of p, and the elements of
the class Frobenius elements or Frobenius substitutions. Frobenius conjectured that
the density of prime numbers belonging to a given conjugacy class of the Galois
group is proportional to the number of elements in the class [14, p. 702]; yet he
could only prove the corresponding weaker result for primes belonging to a given
division (see Remark 2.54) of the Galois group, where the partition of a group into
divisions is in general less fine than its partition into conjugacy classes.

Nikolai Grigor’evich Chebotarev2 (1894–1947) is a Russian mathematician who
made his name with his proof of Frobenius’ conjecture, a result better known today
as Chebotarev’s density theorem. This result is the main focus of this thesis. First
published in 1923 in Russian in the paper Determining the density of a collection of
primes belonging to a given class of permutations [37], and claimed by Chebotarev

1In this thesis, all titles written in italics are translations. See the reference list for the original
untranslated titles.

2 The name Чеботарева will be transliterated from Cyrillic as Chebotarev throughout this text.
Other transliterations commonly used today include Chebotarëv and Čebotarev. In the German
adaptation of his paper [31], Чеботарева was transliterated as Tschebotareff. Chebotarev signed
his letters to Hasse with Tschebotaröw [12, p. 82].
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in his autobiography to have been proved as early as 1922 [12, p. 98], Chebotarev’s
result became widely known after the German adaptation [31] of his Russian paper
was published in volume 95 of the Mathematische Annalen in 1925. The following
translated extract from his paper [31, p. 192] indicates that Dirichlet and Frobenius
laid the foundations for Chebotarev’s work:

The notion of density comes from Lejeune-Dirichlet1, who has proved
that the primes are equally distributed among the congruence classes re-
latively prime to k for any modulus k, i.e. that the density of each prime
of this type is equal to 1

'(k) . The investigations of Kummer link this res-
ult to the determination of the density of a set of primes belonging to
each of the permutations of a cyclotomic field. [. . .] Frobenius has de-
termined the density of divisions. By a division he means the collection
of all permutations TSiT�1, where i runs through all of the values not
exceeding the order f of S and relatively prime to f . However, he has
failed to determine the same for classes of permutations. This is the
subject of this study.

Chebotarev’s manuscript was received by the Mathematische Annalen on Septem-
ber 5, 1924. According to Chebotarev, Emmy Noether told him when they met
in 1925 that although she had been appointed as referee for his article, she had
declined and the job had been passed on to Emil Artin2 (1898–1962) [12, p. 97].

The Artin L-functions (or Artin L-series) and Artin’s reciprocity law, as they are
known today, both introduced by Artin in his article On a new kind of L-series [4] in
1923, are arguably Artin’s two greatest contributions to number theory [27, p. 44].
In a letter to Hasse, dated July 9, 1923, Artin describes his L-series as general
L-series attached to Frobenius group characters which accomplish for general fields
exactly what the usual L-series (Weber’s L-series, see Section 4.1) accomplish for
abelian fields3. If K is a number field and L is a ray class field corresponding
to some ray class group of K, then Artin’s reciprocity law establishes a canonical
isomorphism from the ray class group to the Galois group of the extension L/K
(see Remark 3.37). Artin reciprocity is considered by many to be the centerpiece
of class field theory [29, p. 35], a branch of mathematics which describes all abelian
extensions of a given algebraic number field4. In his 1923 paper [4], Artin boldly
stated his reciprocity law as a theorem [4, Satz 2, p. 98], and proceeded to explain
how his theorem implies that his new L-functions are generalisations of the ordinary
L-functions (those of Weber, see Section 4.1) and how his theorem coincides with

1Here, the German adaptation of Chebotarev’s paper cites [24, p. 13] and, for further inform-
ation, Dirichlet’s Lectures on Number Theory [10, pp. 342–359]. The page number 13 in the first
citation is a miscopy from the the original Russian paper which references pages 307 and 313 �
the starting pages of two of Dirichlet’s works, originally from 1837, the second being his paper
on primes in arithmetic progression. Here Chebotarev is crediting Dirichlet for a notion that we
know today as the Dirichlet density.

2This seems to contradict Artin’s remark to Hasse in a letter [12, p. 82] dated February 10,
1926, that he was unable to understand the article.

3A full translation of this letter [12, p. 74] and other letters from Artin to Hasse may be found
in “Emil Artin and Helmut Hasse: The Correspondence 1923–1958” [12].

4Modern formulations are concerned more generally with abelian extensions of local and global
fields.
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the previously known general law of reciprocity in the case of cyclic extensions;
after which he admitted that he had as yet no proof of the general result, and
thus it could only be taken as true in those cases in which the general reciprocity
law is accessible to us, that is, for fields L of prime degree (over K) and the fields
composed of them. Nonetheless, later in the same article [4, Section 7, p. 105], Artin
used his as yet unproven reciprocity law, to give a “proof” of Frobenius’ conjecture
(Chebotarev’s density theorem).

Artin took particular interest in Chebotarev’s article [31] for its ingenious reduc-
tion of the case of Chebotarev’s density theorem for abelian extensions to the case
for cyclotomic extensions (see Definition 3.1) � this involved “crossing”1 the abelian
extension of interest with a cyclotomic extension satisfying certain properties (see
Chapter 6), an idea whose origin is perhaps Hilbert’s proof of the Kronecker–Weber
theorem (1896) [12, p. 127]. Chebotarev’s method of “crossing” was, in Artin’s own
words, the missing link needed to prove his reciprocity law [12, p. 125]. Indeed
in 1927, within a year and a half of the publication of Chebotarev’s article, Artin
published another, titled Proof of the general reciprocity law [3], in which he used
a modification of Chebotarev’s “crossing” method, together with ideas from the
proof of Dirichlet’s theorem on prime numbers in arithmetic progressions, to give a
complete proof of reciprocity [12, p. 99].

According to Stevenhagen and Lenstra [29, p. 35]:
Chebotarev’s technique is still a crucial ingredient of all known proofs of
Artin’s Reciprocity Law.

On the other hand, today, Chebotarev’s density theorem is typically encountered as
a consequence of Artin reciprocity [29, p. 34], within the study of class field theory.
Unfortunately, the modern presentation of class field theory (in terms of ideles and
adeles) is less accessible than its more elementary formulations (in terms of ideals)
at its conception in the early 1900s. It is interesting to note that Chebotarev’s proof
is independent from these contemporary formulations of class field theory [29, p. 34]
(which, at the time, was under rapid development by the likes of Hilbert, Weber
and Takagi), even though he was aware of some of its notions and their relevance
to his results, such as Weber’s class field and the Kronecker–Weber theorem (see
the introduction to Chapter 4).

1.1 This thesis
The aim of this thesis is to present an elementary proof of Chebotarev’s theorem
for extensions of algebraic number fields, similar in vein to Chebotarev’s original
proof. We assume the reader is familiar with the basic definitions and results of

• abstract algebra: groups, rings and fields;
• algebraic number theory : rings of integers, and splitting of prime ideals;
• Galois theory : Galois extensions, Galois groups, and field compositums; and
• complex analysis : holomorphic and meromorphic functions, poles and residues,

and infinite sums and infinite products;
1The German word is “Durchkreuzung”, introduced by Hasse in Part II of his class field theory

report [12, Footnote 20, p. 126].
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although no more than would be covered in an introductory textbook or under-
graduate course on these subjects.

In Chapter 2, our aim is to understand the statement of Chebotarev’s dens-
ity theorem. We begin with motivation, in the form of several concrete examples
supported with numerical data, for the study of Chebotarev’s theorem. These ex-
amples include particular instances of the already-mentioned theorems of Dirichlet
and Frobenius. The notions of Dirichlet density from analysis, and of Frobenius
elements and Frobenius classes from algebraic number theory, are central to the
statement and proof of Chebotarev’s theorem. For this reason, in this chapter we
provide a comprehensive introduction to these concepts, including detailed proofs
of all stated results.

In Chapters 3 and 4, we prove that Chebotarev’s density theorem holds for a
cyclotomic extension L/K of number fields. If we further assume that the base
field K is the field of rational numbers Q, and indeed Chebotarev’s general formula-
tion of his theorem was for extensions of Q and not arbitrary extensions of number
fields, then this case becomes equivalent to Dirichlet’s theorem on prime numbers
in arithmetic progressions. Our proof proceeds analogously, where Weber’s ideal
class groups modulo a non-zero ideal m of the ring of integers OK (today known
as the narrow ray class group of K for the modulus m, see Remark 3.33) are the
appropriate generalisation of the congruence classes modulo an integer m, relatively
prime to m; and Weber’s L-functions are the appropriate generalisation of Dirich-
let’s L-functions. Although we do not assume any results from class field theory,
we will, in the course of our proof of this case of Chebotarev’s theorem, essentially
prove a part of the cyclotomic case of Artin reciprocity. Here, we omit the proof
of a technical result (Theorem 4.17) which gives an asymptotic estimate for the
number of ideals of norm at most N in a given ray class as N ! 1, as well as the
proof that ray class groups are finite (Proposition 3.36). Such proofs would involve
a long diversion in a direction somewhat orthogonal to the rest of this thesis. It
is worth noting that, throughout our proof of Chebotarev’s density theorem, these
are the only non-elementary results which we do not prove.

In Chapter 5, we present a reduction, due to Deuring [9], of Chebotarev’s density
theorem for an arbitrary field extension L/K to Chebotarev’s density theorem for
a certain intermediate cyclic extension L/M. This reduction has little analytic
content � it is largely an application of properties of decomposition groups and
Frobenius elements to the construction of a bijection between the sets of prime
ideals of interest of K and M. This reduction is used twice in the overall proof of
Chebotarev’s theorem � once to reduce the general case of Chebotarev’s theorem
to the abelian case (cyclic extensions are abelian), and once again in the reduction
of the abelian case to the cyclotomic case, where the intermediate field extension
L/M turns out to be cyclotomic.

In Chapter 6, we present a simplified version of Chebotarev’s field “crossing”
argument mentioned earlier, thus reducing the abelian case of Chebotarev’s theorem
to the cyclotomic case, and completing our overall proof of the general result. The
proof here, again, is mostly algebraic in nature � a combination of group theory,
Galois theory, properties of cyclotomic extensions, and compositums of fields.

4



1.2 Source material
Our proof of Chebotarev’s density theorem, distributed across Chapters 3, 4, 5
and 6, is an elaboration of the proof presented in Section 6.5 of Michael Fried and
Moshe Jarden’s “Field Arithmetic” [13, pp. 121–128]1. Tom Apostol’s “Introduc-
tion to Analytic Number Theory” [2] is a great resource for learning about the
general theory of Dirichlet series, and is also the basis of our treatment of the
characters of finite abelian groups (Appendix A). Much of the background material
on algebraic number fields that we present in Chapter 2 is based on Chapters 3
and 4 of Daniel Marcus’ “Number Fields” [28], whose treatment of the Dedekind
zeta function and Dirichlet’s L-functions in Chapter 7 was also a strong influence
on our own treatment of the more general Weber L-functions (Section 4.1). An-
drew Sutherland’s lecture notes for MIT’s graduate course 18.785 - Number The-
ory I [30] were an invaluable resource for background knowledge in all aspects of
this thesis, with lectures 7, 18, 19, 21 and 22 being particularly helpful. For the
history presented in this chapter, the papers by Peter Stevenhagen and Hendrik
Lenstra about Chebotarev [29] and Artin [27] were particularly helpful, as was the
book “Emil Artin and Helmut Hasse: The Correspondence 1923–1958” [12] which
provides commentary on translations of Artin’s letters to Hasse. Photocopies of
many of the original works referenced in this section [3, 4, 9, 10, 14, 24–26, 31, 37]
may be found and downloaded for free from either the Internet Archive [17] or the
Biodiversity Heritage Library [7].

1In Section 6.4, Fried and Jarden also prove Chebotarev’s density theorem for function
fields [13, pp. 115–120].
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Chapter 2

Background

In this chapter, we aim to understand the following statement of Chebotarev’s
density theorem.
Theorem 2.1 (Chebotarev’s density theorem). Let L/K be a Galois extension of
number fields with Galois group G, and let C be a conjugacy class of G. Let

P =
�
non-zero prime ideals p of OK unramified in OL with

�L/K
p

�
= C

 
.

Then the Dirichlet density �(P ) of P exists, and satisfies

�(P ) =
|C|

|G|
.

To do so, apart from familiarity with basic concepts from Galois theory and
algebraic number theory (summarised in Section 2.1 for the reader’s convenience),
we will need the notions of the Frobenius class (denoted above by the Artin symbol�L/K

p

�
) and Dirichlet density, both of which will be defined later in this chapter,

in Section 2.3 and Section 2.2 respectively. For motivation, we provide here two
examples of numerical observations, which, although seemingly unrelated, are both
implied by Chebotarev’s theorem. Later in this thesis, once we have the necessary
background knowledge, we will return to explain and generalise these observations.
Example 2.2. It is clear why no prime numbers except 2 end in an even digit,
and why no prime numbers except 5 have 5 as their last digit. In the following
histogram, we see that approximately the same number of the the remaining prime
numbers less than 100 end in each of the remaining possible last digits 1, 3, 7 and 9.

1 11 31 41 61 71
3 3 13 23 43 53 73 83
7 7 17 37 47 67 97
9 19 29 59 79 89

Consider now the larger upper bound 10000. There are 1229 prime numbers less
than 10000. Tallying the last digits of these primes (ignoring the special primes 2
and 5), we see in Table 2.1 that each of the final digits 1, 3, 5 and 9 still occurs
about a quarter of the time.

In Theorem 3.14, applying Chebotarev’s density theorem to a cyclotomic exten-
sion Q(⇣m)/Q, where ⇣m is a primitive m-th root of unity, we will deduce a stronger
version of Dirichlet’s theorem on prime numbers in arithmetic progressions than
the one stated in Chapter 1. In particular, the equidistribution of primes across the

7



Table 2.1: Primes less than 10000 (excluding 2 and 5) by last digit.

Digit Count Fraction

1 306 24.9%
3 310 25.2%
7 308 25.1%
9 303 24.7%

last digits 1, 3, 7 and 9 may be deduced from Chebotarev’s density theorem for the
cyclotomic extension Q(⇣10)/Q, where ⇣10 is a primitive 10-th root of unity.

Remark 2.3. We would like to be able to write statements like

�
��

3, 13, 23, 43, 53, 73, 83, . . .
 �

=
1

4
,

where the density �(A) of a set of primes A should be a formalisation of the intuitive
notion of the “frequency” of the elements of A amongst all prime numbers. In
this thesis, we will mainly work with Dirichlet density, which we will define in
Section 2.3. For now, it is easier to define the stronger notion of natural density,
which, for a set of prime numbers A, is given by

d(A) = lim
n!1

|{p 2 A : p 6 n}|

|{p prime : p 6 n}|
.

If the natural density of A exists, then it coincides with the Dirichlet density of A.
Example 2.4. Consider the polynomial f(X) = X3

� 2. Given a prime number p,
we can reduce the coefficients of f modulo p, producing a polynomial f 2 Fp[X].
Here, Fp = Z/pZ is the finite field of order p. Although f is irreducible in Z[X],
f is not necessarily irreducible in Fp[X]. For example, in F5[X], f has two irreducible
factors, namely X + 2 and X2 + 3X + 4. The decomposition type of f modulo p
is the unordered list of the degrees of the factors in the irreducible factorisation
of f in Fp[X]. For example, the decomposition type of f modulo 5 is 1, 2. The
decomposition types of f mod p for several small primes p are shown in Table 2.2.
Tallying the decomposition types of f modulo p for all 1229 of the prime numbers p
less than 10000, we see in Table 2.3 that the decomposition type 1, 2 occurs for
approximately half of these prime numbers, the decomposition type 3 occurs for
approximately a third of these prime numbers, and the decomposition type 1, 1, 1
occurs for approximately a sixth of these prime numbers.

It is well known that the Galois group G of the polynomial f over Q (i.e. the
Galois group of L/Q where L is the splitting field of f over Q) is isomorphic, via
its action on the roots of f , to the (entire) symmetric group

S3 = {(1)(2)(3), (1)(23), (2)(13), (3)(12), (123), (132)}.

In general, the Galois group of an irreducible polynomial of degree n over Q is
isomorphic to a subgroup of Sn via its action on the roots of the polynomial. The

8



Table 2.2: Decomposition type of f modulo p for small primes p.

p Factorisation of f in Fp[X] Decomposition type

2 X3 1, 1, 1
3 (X + 1)3 1, 1, 1
5 (X + 2)(X2 + 3X + 4) 1, 2
7 X3 + 5 3
11 (X + 4)(X2 + 7X + 5) 1, 2
13 X3 + 11 3
17 (X + 9)(X2 + 8X + 13) 1, 2
19 X3 + 17 3
23 (X + 7)(X2 + 16X + 3) 1, 2
29 (X + 3)(X2 + 26X + 9) 1, 2
31 (X + 11)(X + 24)(X + 27) 1, 1, 1

Table 2.3: Distribution of decomposition types of f modulo primes p < 10000, and
of cycle types of elements � 2 Gal(L/Q), compared.

Primes p < 10000 � 2 Gal(L/Q)

Type Count Fraction Count Fraction

1, 1, 1 200 16.3% 1 1/6
1, 2 616 50.1% 3 1/2
3 413 33.6% 2 1/3

cycle type of an element of such a Galois group is the unordered list of the lengths of
the cycles in a disjoint cycle decomposition of its permutation action on the roots.

Curiously, G has three elements of cycle type 1, 2, two elements of cycle type 3,
and one element of cycle type 1, 1, 1, approximately matching the distribution of
the primes less than 10000 across the possible decomposition types, as shown in
Table 2.3. From the data, one might conjecture that

�
��

p of decomposition type 1, 2
 �

=
1

2
=

|{� 2 G of cycle type 1, 2}|

|G|

�
��

p of decomposition type 3
 �

=
1

3
=

|{� 2 G of cycle type 3}|

|G|

�
��

p of decomposition type 1, 1, 1
 �

=
1

6
=

|{� 2 G of cycle type 1, 1, 1}|

|G|

Later in this chapter, we will see that this is a specific instance of the Frobenius
density theorem (Theorem 2.49) for the polynomial f . In Proposition 2.51, we will
see that the Frobenius classes provide the connection between the decomposition
types of f and the cycle types of the elements of G � for most primes p, the
decomposition type of f modulo p is the same as the cycle type of all elements in
the Frobenius class

�L/Q
pZ
�

associated to p. It is this connection which will allow us
to deduce the Frobenius density theorem from Chebotarev’s density theorem.

9



2.1 Algebraic number theory
In this thesis, it is assumed that the reader is familiar with the basic definitions
and results from algebraic number theory. For the convenience of the reader and to
introduce our own notation, we summarise here the ones that we will use. Proofs
of almost all of these results can be found in Chapters 2 and 3 of Marcus [28].

2.1.1 Algebraic number fields
An algebraic number field (or just number field) is a subfield K of C which is a finite
degree extension of the field of rational numbers Q. The degree of a field extension
L/K (this notation means K ✓ L) is the dimension of the field L when considered
as a vector space over K, and is denoted [L : K].

Let L/K be an extension of number fields. The primitive element theorem says
that we may write L = K(↵) for some ↵ 2 L, where K(↵) denotes the smallest
subfield of C containing both K and ↵. The element ↵ is called a primitive ele-
ment for L over K. Algebraically, the ring L is isomorphic to the quotient ring
K[X]/hfi where f 2 K[X] is the minimal polynomial of ↵ over K, that is, f is the
smallest degree polynomial in K[X] of which ↵ is a root, and such a polynomial is
irreducible. If n = deg(f), that is, n is the degree of the polynomial f , then the set
{1,↵, . . . ,↵n�1

} is a basis for L as a vector space over K, and thus [L : K] = n. In
particular, taking K = Q, all number fields are of the form Q(↵) ⇠= Q[X]/hfi.

An embedding of a ring R into a ring S is an injective ring homomorphism from R
to S. If L/K is an extension of number fields, then the number of K-embeddings of L
(embeddings of L into C which fix K pointwise) is [L : K]. Indeed, writing L = K(↵)
for some primitive element ↵ 2 L, each K-embedding of L is uniquely determined by
sending ↵ to one of the [L : K] distinct roots of the minimal polynomial of ↵ over K.
If L/K is a Galois extension, that is, the splitting field of an irreducible polynomial
in K[X], then each of the K-embeddings of L is actually an automorphism of L.
Regardless of whether the extension L/K is Galois1, the K-automorphisms of L
form a group under composition called the Galois group of the extension L/K, and
denoted Gal(L/K).

2.1.2 Rings of integers
An algebraic integer is a root (in C) of a monic polynomial with integer coefficients.
The set of algebraic integers forms a subring of C. The intersection of this ring
with any number field K is a subring of K called the ring of integers of K, and
denoted OK. We have that OQ = Z, and in general, a number field K is the field
of fractions of its ring of integers OK. If L/K is an extension of number fields, then
Z ✓ OK ✓ OL. The ring OL is the integral closure of OK in L � this means that for
each ↵ 2 L, we have that ↵ 2 OL if and only if ↵ is the root of a monic polynomial
in OK[X]. If � 2 K, then there is an integer n such that n� is an algebraic integer.
Hence, when applying the primitive element theorem to extensions of number fields,
we may take the primitive element to be an algebraic integer.

Recall that a fractional ideal of OK is an OK-submodule a of K such that
↵a ✓ OK for some nonzero ↵ 2 OK. Equivalently, a is a fractional ideal of OK
if and only if a = ↵�1b for some ideal b of OK and some non-zero ↵ 2 OK. The

1Some authors use the notation Aut(L/K) for the group of K-automorphisms of L when the
extension L/K is not Galois.
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non-zero fractional ideals of OK form a group, denoted IK. The group operation is
multiplication of fractional ideals � if a and b are fractional ideals, then ab is the
set of all finite sums whose terms are of the form ↵� where ↵ 2 a and � 2 b. The
identity element is the ideal OK. If a is a fractional ideal of OK, then

a�1 = {� 2 K : �a ✓ OK}.

Let P (K) denote the set of non-zero prime ideals of OK. Every non-zero frac-
tional ideal a of OK may be written uniquely (up to ordering) as a product of integer
powers of non-zero prime ideals, that is,

a =
Y

p2P (K)

pvp(a)

for some integers vp(a) uniquely determined by a, where only finitely many vp(a) are
non-zero. The integer vp(a) is called the p-adic valuation of a. The fractional ideal
a is an (ordinary) ideal of OK if and only if all of the integers vp(a) are non-negative.

Let a and b be fractional ideals of OK. We say that b divides a, and write b | a, if
there is an (ordinary) ideal c of OK such that a = bc. The greatest common divisor
and lowest common multiple are defined respectively by

gcd(a, b) = a+ b and lcm(a, b) = a \ b.

We say that a and b are coprime if gcd(a, b) = OK. If a and b are coprime, then
lcm(a, b) = ab. If a and b are non-zero, then we have

d = gcd(a, b) () 8p 2 P (K). vp(d) = min
�
vp(a), vp(b)

�
,

m = lcm(a, b) () 8p 2 P (K). vp(m) = max
�
vp(a), vp(b)

�
.

This means that distinct non-zero prime ideals of OK are coprime.

2.1.3 Norms of elements and ideals
Let L/K be an extension of number fields of degree n, and let �1, . . . , �n be the
K-embeddings of L. For each � 2 L, the relative norm NL

K(�) is defined by

NL
K(�) = �1(�)�2(�) · · · �n(�).

If � 2 L, then NL
K(�) 2 K. If � 2 OL, then NL

K(�) 2 OK. The relative norm is
multiplicative. This means that for all � and � in L we have

NL
K(��) = NL

K(�)N
L
K(�).

If a is a non-zero ideal of OK, then the absolute ideal norm of a, denoted N(a),
is the size of the quotient ring OK/a. The absolute ideal norm is multiplicative,
that is, N(ab) = N(a)N(b) whenever a and b are non-zero ideals of OK. Also, if
� 2 OK is non-zero, then the principal ideal h�i has norm

N(h�i) = |NK
Q (�)|.
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2.1.4 Splitting of prime ideals
Let L/K be an extension of number fields, and let p be a non-zero prime ideal
of OK. The ideal pOL of OL is not necessarily prime. We say that a prime ideal P
of OL lies over p (and also that p lies under P) if any of the following equivalent
statements are true:

• P | pOL,
• pOL ✓ P,
• p ✓ P,
• P \OK = p,
• P \K = p.

Note here that if P is a prime ideal of OL, then P \ K is a prime ideal of OK.
Every non-zero prime ideal of OL lies over exactly one prime ideal of OK, and every
non-zero prime ideal of OK lies under at least one prime ideal of OL.

The ramification index e(P|p) of a prime ideal P over p is given by the P-adic
valuation:

e(P|p) = vP(pOL).

As P lies over p, clearly e(P|p) > 1. We say that P is ramified over p if e(P|p) > 1,
and otherwise, we say that P is unramified over p. If e(P|p) = 1 for all prime ideals
P of OL lying over p, then we say that p is unramified in OL.

For each prime ideal P of OL above p, the quotient ring OL/P is a finite field,
called the residue field of P and denoted by FP. If ◆ : OK ,! OL is the inclusion
map, and ⇡P : OL ! FP is the quotient morphism, then ker(⇡P � ◆) = P \OK = p.
By the first isomorphism theorem, there is a unique map ◆ : Fp ,! FP which satisfies

◆(↵ + p) = ↵ +P 8↵ 2 OK,

and it is an embedding. The degree of the extension FP/Fp, denoted f(P|p), is
called the inertial degree of P over p. The inertial degree f(P|p) is finite because
FP/Fp is an extension of finite fields.

The ramification indices and inertial degrees behave nicely in towers, as is shown
in the following proposition.
Proposition 2.5 ([28, Chapter 3, Exercise 10]). Let K ✓ M ✓ L be a tower
of number fields. Let P, q and p be non-zero prime ideals of OL, OM and OK
respectively, with P lying over q and q lying over p. Then

e(P|p) = e(P|q)e(q|p),

f(P|p) = f(P|q)f(q|p).

Proof. The equation for the ramification indices follows from the uniqueness of the
prime ideal factorisation of pOL in OL. The equation for the inertial degrees is the
tower law applied to the tower Fp ✓ Fq ✓ FP.

The ramification indices, inertial degrees and the degree of an extension are
related by the following equation.
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Proposition 2.6 ([28, Theorem 21]). Let L/K be an extension of number fields,
let p be a non-zero prime ideal of OK, and let P be the set of prime ideals of OL
above p. Then

[L : K] =
X

P2P

e(P|p)f(P|p).

2.1.5 Discriminants and ramified primes
Let L be a number field of degree n over Q, and let �1, . . . , �n be the Q-embeddings
of L. The discriminant discL(�1, . . . , �n) of an n-tuple �1, . . . , �n of elements of L
is defined to be the square of the determinant of the matrix whose entry in the i-th
row and j-th column is �i(�j). Swapping two rows or columns of a matrix negates
its determinant, so the discriminant is independent of the ordering of the �i and
the �j. The tuple �1, . . . , �n is a Q-basis of L if and only if discL(�1, . . . , �n) 6= 0.
If �1, . . . , �n 2 OL, then discL(�1, . . . , �n) 2 Z. If � 2 L, then

discL(1, �, . . . , �
n�1) =

Y

16i<j6n

�
�i(�)� �j(�)

�2 (2.1.1)

as this discriminant is the square of a Vandermonde matrix.
The ring OL is a finitely generated free Z-module of rank [L : Q]. A Z-basis

of OL is called an integral basis of OL. All integral bases of OL are also Q-bases
of L. If �1, . . . , �n is an integral basis of OL and �1, . . . , �n 2 OL, then there is an
n⇥ n integer matrix A such that (�1, . . . , �n) = (�1, . . . , �n)A, and so

discL(�1, . . . , �n) = det(A)2 discL(�1, . . . , �n). (2.1.2)

In particular, if �1, . . . , �n and �1, . . . , �n are both integral bases of OL, then A is
invertible, so det(A) = ±1, and thus discL(�1, . . . , �n) = discL(�1, . . . , �n). Hence,
we may define the discriminant of L, denoted disc(L), by

disc(L) = discL(�1, . . . , �n)

where �1, . . . , �n is any integral basis of OL.
The discriminant of a number field L tells us which prime numbers ramify in OL,

as is explained in the following proposition.
Proposition 2.7 ([28, Theorem 24 and Theorem 34]). Let p be a prime number,
and let L be a number field. Then pZ is ramified in OL if and only if p | disc(L).
Corollary 2.8 ([28, Corollary 3 to Theorem 24]). If L/K is an extension of number
fields, only finitely many non-zero prime ideals of OK are ramified in OL.

2.1.6 Galois theory of field compositums
Given number fields M1 and M2, their compositum, denoted M1M2, is the smallest
subfield of C containing both M1 and M2. It is the set of all finite sums of products
of the form m1m2 where m1 2 M1 and m2 2 M2. We will need the following
well-known results from Galois theory about compositums of fields.
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Proposition 2.9 ([28, Theorem 56]). Let M1 and M2 be number fields with a
common subfield K. If M1/K is Galois, then so is M1M2/M2, and the function

� : Gal(M1M2/M2) ! Gal(M1/K), given by � 7! �|M1
,

is an embedding of groups. Also, � is an isomorphism if and only if M1 \M2 = K.

C

M1M2

M1 M2

M1 \M2

K

Corollary 2.10. Let M1 and M2 be number fields with a common subfield K, and
suppose that M1/K is Galois. Then M1 \M2 = K if and only if

[M1M2 : K] = [M1 : K] [M2 : K] .

Proposition 2.11 ([20, VI, §1, Theorem 1.14]). Let M1,M2 be number fields which
are both Galois over a common subfield K. Then M1M2/K is also Galois, and

� : Gal(M1M2/K) ! Gal(M1/K)⇥Gal(M2/K), given by � 7! (�|M1
, �|M2

),

is an embedding of groups. Also, � is an isomorphism if and only if M1 \M2 = K.
Corollary 2.12. Using the same notation as Proposition 2.11, if M1/K and M2/K
are abelian extensions (i.e. are Galois extensions with abelian Galois groups), then
so is M1M2/K.

2.2 Decomposition groups and Frobenius elements
Central to the statement and proof of Chebotarev’s density theorem is the Frobenius
class or Artin symbol of each unramified non-zero prime ideal p of OK in a Galois
extension L/K of number fields. The aim of this section is to introduce the theory
surrounding these concepts. Our treatment is roughly a combination of Chapter 4
of Marcus’ “Number Fields” [28] and the lecture notes for Lecture 7 of Andrew
Sutherland’s MIT graduate course 18.785 - Number Theory I [30]. As the results
that we state here are very important to the rest of the thesis, we provide proofs of
all of the results in this section.

2.2.1 Splitting of prime ideals and Galois theory
In this section, we investigate the splitting of prime ideals in Galois extensions of
number fields.
Lemma 2.13. Suppose that � is an automorphism of a number field L. Then the
restriction �|

OL
is an automorphism of OL. Additionally, if � fixes pointwise a

subfield K of L, then �|
OL

fixes pointwise the subring OK of OL.
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Proof. Let �0
2 �(OL). Then �0 = �(�) for some � 2 OL. As OL is the integral

closure of Z in L, � is the root of a monic polynomial f 2 Z[X]. As �(1) = 1, and
� is additive, � fixes Z pointwise, and thus it fixes the coefficients of f . Hence

f
�
�(�)

�
= �

�
f(�)

�
= �(0) = 0.

As �0 = �(�) is a root of the monic polynomial f 2 Z[X], and OL is the integral
closure of Z in L, we have �0

2 OL. So �(OL) ✓ OL. Replacing � with ��1 in the
above argument implies that ��1(OL) ✓ OL, and thus OL ✓ �(OL) because � is
surjective. Hence �(OL) = OL, and since � is injective, this means that it restricts
to an automorphism of OL. If � fixes K pointwise, then �|

OL
fixes pointwise the

elements of K which are in OL, that is, the elements of OK.

Proposition 2.14. Let L/K be an extension of number fields with Galois group G.
Let p be a non-zero prime ideal of OK, and let P denote the set of prime ideals P
of OL lying above p. Then P is a left G-set with the action given by � ·P = �(P)
for all � 2 G and all P 2 P .

Proof. We begin by showing that (�) · (�) : G ⇥ P ! P does indeed map into P .
Let � 2 G and P 2 P . By Lemma 2.13, � restricts to an automorphism of OL
which fixes OK pointwise. As all ring isomorphisms send prime ideals to prime
ideals, �(P) is a prime ideal of OL. Also, as � fixes OK pointwise, �(p) = p. As P
lies above p, we have p ✓ P, and so p = �(p) ✓ �(P), which means that �(P) also
lies above p. Hence � ·P = �(P) 2 P . The map (�) ·(�) : G⇥P ! P defines a left
group action on P because 1G ·P = id(P) = P and � · (⌧ ·P) = �(⌧(P)) = (�⌧) ·P
for all �, ⌧ 2 G and all P 2 P .

Proposition 2.15. Suppose that � is an automorphism of a number field L, that
P is a non-zero prime ideal of OL, and that P0 = �(P). Then there is a unique
map � : FP ! FP0 which satisfies

�(↵ +P) = �(↵) +P0
8↵ 2 OL,

and it is a ring isomorphism. Additionally, if � fixes a subfield K of L pointwise,
and p is the prime ideal of OK under P, then � fixes Fp pointwise (i.e. with respect
to the embeddings ◆P : Fp ,! FP and ◆P0 : Fp ,! FP0).

Proof. Let ⇡P0 : OL ! FP0 denote the quotient morphism. As �|
OL

is an automorph-
ism of OL (Lemma 2.13), and ⇡P0 is surjective, their composition ⇡P0 �

�
�|

OL

�
is

surjective. Also,
ker
⇣
⇡P0 �

�
�|

OL

�⌘
= ��1(P0) = P.

The existence of the map � satisfying the properties in the proposition follows by
the first isomorphism theorem.

Suppose now that K is a subfield of L which is fixed pointwise by �, and let p
be the prime ideal of OK under P. For all � 2 OK, we have

�
�
◆P(� + p)

�
= �(� +P) = �(�) +P0 = � +P0 = ◆P0(� + p).

Hence � fixes Fp pointwise with respect to its embeddings into FP and FP0 .
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Proposition 2.16. Let L/K be a Galois extension of number fields with Galois
group G. Let p be a non-zero prime ideal of OK, and let P denote the set of prime
ideals P of OL lying above p. Then the action of G on P is transitive (i.e. it has a
single orbit).

Proof. Assume, for a contradiction, that there are prime ideals P1 and P2 above
p such that �(P1) 6= P2 for all � 2 G. Number the remaining elements of P so
that P = {P1,P2, . . . ,Pg} where g = |P |. As the ideals P1, . . . ,Pg are pairwise
coprime, by the Chinese remainder theorem, there is an ↵ 2 OL which simultan-
eously satisfies the congruence equations

↵ ⌘ 0 (modP1), ↵ ⌘ 1 (modP2), . . . , ↵ ⌘ 1 (modPg).

As L/K is Galois, the Galois group G is the set of all K-embeddings of L, and
so NL

K(↵) =
Q

�2G
�(↵). The factors of the product defining NL

K(↵) are all in OL
because each � 2 G restricts to an automorphism of OL and ↵ 2 OL. As ↵ is one
such factor, and ↵ is an element of the ideal P1 of OL, we must have NL

K(↵) 2 P1.
But NL

K(↵) 2 OK, so actually

NL
K(↵) 2 OK \P1 = p ✓ P2.

Now, let � 2 G. We know that ��1(P2) is an element of P , and by assumption
it is not P1, so ↵ ⌘ 1 (mod��1(P2)). In other words, we have

↵ + ��1(P2) = 1 + ��1(P2),

and since � is an automorphism, we may apply � to get

�(↵) +P2 = �(1) +P2 = 1 +P2.

So we have �(↵) ⌘ 1 (modP2), for all � 2 G. As the factors of the product defining
NL

K(↵) are all congruent to 1 modulo P2, so is NL
K(↵) itself. Hence NL

K(↵) /2 P2,
which is a contradiction.

Corollary 2.17. Assuming the same notation as Proposition 2.16, the ramification
indices e(P|p) and inertial degrees f(P|p) are the same for all P 2 P .

Proof. See Proposition 8.1 in Chapter II of Lang [23].

Proof. Let P1 and P2 be elements of P . As the action of G on P is transitive
(Proposition 2.16), there is a � 2 G such that �(P1) = P2. By Proposition 2.15,
FP1 and FP2 are isomorphic, and thus

f(P1|p) = [FP1 : Fp] = [FP2 : Fp] = f(P2|p).

It remains to show that e(P1|p) = e(P2|p). We have the prime ideal factorisation

pOL =
Y

P2P

Pe(P|p).
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By Lemma 2.13, ��1 restricts to an automorphism of OL which fixes pointwise OK
and thus also p. Hence

pOL = ��1(p)��1(OL) = ��1(pOL) =
Y

P2P

��1(P)e(P|p) =
Y

P2P

Pe(�(P)|p),

where the rightmost equality holds because ��1 permutes the elements of P (Pro-
position 2.14). By the uniqueness of the prime ideal factorisation of pOL, it follows
that e(�(P)|p) = e(P|p) for all P 2 P . In particular, this means that

e(P2|p) = e(�(P1)|p) = e(P1|p).

Remark 2.18. From the corollary, if L/K is a Galois extension of number fields,
and p is a non-zero prime ideal of OK, then the prime ideal factorisation of pOL is

pOL = (P1 · · ·Pgp)
ep

where P1, . . . ,Pgp are the prime ideals of OL above p, and they have a common
ramification index ep and inertial degree fp. By Proposition 2.6, epfpgp = [L : K].

2.2.2 Decomposition and inertia groups
To construct the Frobenius element of a non-zero prime ideal P of OL in a Galois
extension of number fields L/K, we need to define the decomposition and inertia
groups of P over p, and understand how they are related to the Galois group
Gal(FP/Fp) of the residue field extension, where p is the prime ideal of OK under P.
Definition/Proposition 2.19 (Decomposition group). Let L/K be an extension
of number fields with Galois group G, and let P be a prime ideal of OL lying above
the non-zero prime ideal p of OK. Then the set

D(P|p) = {� 2 G : �(P) = P}

is a subgroup of G, called the decomposition group of P over p. If L/K is Galois,
then |D(P|p)| = epfp.

As we will use the orbit-stabiliser theorem several times throughout this thesis,
including to compute the order of D(P|p) in the proof of the above proposition, we
recall its statement here for the reader’s convenience.
Theorem 2.20 (Orbit-stabiliser theorem). Let G be a group, and let S be a left
G-set. Let s 2 S, let H be the stabiliser of s in G, and let G · s denote the orbit of
s in G. Then the map  : G · s ! G/H, given by g · s 7! gH for all g 2 G, is a
G-set isomorphism. In particular, if G · s is finite, then |G · s| = [G : H].

Proof. See Proposition 8.1 of Chapter II in Lang [23].

Proof of Definition/Proposition 2.19. Let P be the set of prime ideals of OL above p.
Then D(P|p) is the stabiliser of P under the action of G on P , so it is a subgroup

17



of G. If L/K is Galois, then P is the orbit of P under this action (Proposition 2.16),
so by the orbit-stabiliser theorem (Theorem 2.20) and Remark 2.18,

|D(P|p)| =
|G|

|P |
=

epfpgp
gp

= epfp.

Let L be a number field and let P be a non-zero prime ideal of OL. In Propos-
ition 2.15, we constructed a map � 7! �, from the group of automorphisms of L
which fix P, to the group of automorphisms of FP. Here, � : FP ! FP is given by

�(↵ +P) = �(↵) +P 8↵ 2 OL.

Suppose additionally that K is a subfield of L, and that p is the prime ideal
of OK lying under P. Let  P|p denote the restriction of the above-mentioned map
� 7! � to the subgroup D(P|p). Then, also in Proposition 2.15, we showed that
the image of  P|p is actually contained in Gal(FP/Fp), so we may write

 P|p : D(P|p) ! Gal(FP/Fp).

Remark 2.21. Suppose now that M is an intermediate field of the extension
L/K, and that q is the prime ideal of OM lying above p and below P. As K ✓ M,
any automorphism of L which fixes M pointwise also fixes K pointwise, and so
Gal(L/M) ✓ Gal(L/K). In particular, any � 2 Gal(L/M) which fixes P is also in
Gal(L/K) and still fixes P. In other words, D(P|q) ✓ D(P|p). As  P|q and  P|p

are both restrictions of the same map � 7! �, and their respective domains D(P|q)
and D(P|p) satisfy the inclusion D(P|q) ✓ D(P|p), clearly the restriction of  P|p

to D(P|q) is  P|q. When there is no confusion as to which field is the base field,
we will just write  P, rather than  P|p.

In the rest of this section, our goal is to apply the first isomorphism theorem to
the map  P, which we will see is a surjective group homomorphism.
Definition/Proposition 2.22. Let L/K be an extension of number fields with
Galois group G, and let P be a prime ideal of OL lying above the non-zero prime
ideal p of OK. Then the map  P : D(P|p) ! Gal(FP/Fp) is a group homomorphism
whose kernel is the set

I(P|p) = {� 2 G : �(↵) ⌘ ↵ (modP) for all ↵ 2 OL}.

We call I(P|p) the inertia group of P over p.

Proof. Let �, ⌧ 2 D(P|p). For all ↵ 2 OL, we have

 P(�⌧)(↵ +P) = (�⌧)(↵) +P = �
�
⌧(↵)

�
+P =  P(�)

�
⌧(↵) +P

�

=  P(�)
�
 P(⌧)(↵ +P)

�
=
�
 P(�) P(⌧)

�
(↵ +P).
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Hence  P(�⌧) =  P(�) P(⌧), and so  P is a group homomorphism. We also have

ker( P) = {� 2 D(P|p) :  P(�)(↵ +P) = ↵ +P for all ↵ 2 OL}

= {� 2 D(P|p) : �(↵) +P = ↵ +P for all ↵ 2 OL}

= {� 2 D(P|p) : �(↵) ⌘ ↵ (modP) for all ↵ 2 OL}

= I(P|p).

Proposition 2.23. Assume the same notation as Definition/Proposition 2.22, and
suppose additionally that the extension L/K is Galois. Then  P is surjective.

Proof. As FP/Fp is an extension of finite fields, it is a finite and separable extension,
and so FP = Fp(↵) for some ↵ 2 F⇥

P by the primitive element theorem.
Let P1, . . . ,Pg be the g = gp prime ideals of OL above p, where P1 = P. As the

ideals P1, . . . ,Pg are pairwise coprime, by the Chinese remainder theorem, there is
an ↵ 2 OL which simultaneously satisfies the equations:

↵ +P1 = ↵, ↵ +P2 = 0 +P2, . . . , ↵ +Pg = 0 +Pg.

Let
h =

Y

�2G

�
X � �(↵)

�
2 L[X].

We know that K = LG because the extension L/K is Galois. Hence, if we can show
that the coefficients of h are fixed by each element of G, then we may conclude that
h 2 K[X]. Let ⌧ 2 G. The induced map e⌧ : L[X] ! L[X] given by

e⌧
⇣ dX

k=0

akX
k

⌘
=

dX

k=0

⌧(ak)X
k

is a ring homomorphism. As the map � 7! ⌧� is a permutation of G, we have

e⌧(h) =
Y

�2G

e⌧
�
X � �(↵)

�
=
Y

�2G

�
X � (⌧�)(↵)

�
= h.

This means that h and e⌧(h) have the same coefficients, and thus ⌧ fixes the coeffi-
cients of h. As ↵ is an algebraic integer, all of the �(↵) are algebraic integers, and
thus all of the coefficients of h are algebraic integers. Hence h 2 OK[X].

Let h 2 Fp[X] be obtained by reducing the coefficients of h modulo p. Clearly

h =
Y

�2D(P|p)

⇣
X �

�
�(↵) +P

�⌘ Y

�2G\D(P|p)

⇣
X �

�
�(↵) +P

�⌘

in FP[X]. We claim that the roots of h coming from G\D(P|p) are zero, and thus

h/Xm =
Y

�2D(P|p)

⇣
X �

�
�(↵) +P

�⌘
2 Fp[X],
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where m = |G\D(P|p)|. Suppose that � 2 G\D(P1|p). Then ��1(P1) is a non-zero
prime ideal of OL above p, but ��1(P1) 6= P1 as � /2 D(P1|p). Hence,

↵ + ��1(P1) = 0 + ��1(P1),

and since � is an automorphism, we may apply � to both sides to get

�(↵) +P1 = 0 +P1.

Let � 2 Gal(FP/Fp). As � fixes the coefficients of h/Xm, it permutes its roots,
and so �(↵) = �(↵) + P =  P(�)(↵) for some � 2 D(P|p). But as FP = Fp(↵),
the elements of Gal(FP/Fp) are uniquely determined by where they send ↵, and so
� =  P(�). Hence  P is surjective.

Recall that the Galois group of an extension of finite fields Fqk/Fq is cyclic of
order k, and is generated by the Frobenius automorphism x 7! xq. In our case,
Gal(FP/Fp) is cyclic of order fp, and is generated by the Frobenius automorphism
x 7! xN(p). Combining Definition/Proposition 2.22 and Proposition 2.23, we know
that if L/K is Galois, then  P : D(P|p) ! Gal(FP/Fp) is a surjective group homo-
morphism with kernel I(P|p). By the first isomorphism theorem for groups,  P

induces an isomorphism

 P : D(P|p)/I(P|p) ! Gal(FP/Fp),

and thus D(P|p)/I(P|p) is also cyclic of order fp, generated by some element sent
by  P to the Frobenius automorphism. As |D(P|p)| = epfp, this also implies that
|I(P|p)| = ep. Hence I(P|p) is the trivial group if and only if p is unramified in
OL. In this case, D(P|p) is itself isomorphic to Gal(FP/Fp).

From now on, we will only be concerned with the case that p is unramified
in OL, that is, that ep = 1. The following corollary of Definition/Proposition 2.22
and Proposition 2.23 summarises the discussion so far, in this particular case.
Corollary 2.24. Assume the same notation as Proposition 2.23, and suppose ad-
ditionally that p is unramified in OL. Then

 P : D(P|p) ! Gal(FP/Fp)

is a group isomorphism. It follows that D(P|p) is a cyclic group of order fp, gen-
erated by the element sent by  P to the Frobenius automorphism x 7! xN(p).

2.2.3 Frobenius elements and Frobenius classes
It is clear now what the Frobenius element associated to a prime ideal P of OL in
a Galois extension of number fields L/K should be.
Definition 2.25 (Frobenius element). Let L/K be a Galois extension of number
fields with Galois group G. Let p be a non-zero prime ideal of OK which is unramified
in OL, and let P be one of the prime ideals of OL lying above p. The Frobenius
element (or Frobenius substitution) of P is the element of D(P|p) which is sent by
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 P to the Frobenius automorphism x 7! xN(p) of Gal(FP/Fp). It will be denoted
by the Frobenius symbol1

⇥L/K
P

⇤
.

Proposition 2.26. Assume the same notation as Definition 2.25. Then
⇥L/K

P

⇤
is

the unique element � 2 G which satisfies the congruence equation

�(↵) ⌘ ↵N(p) (modP) 8↵ 2 OL. (2.2.1)

Proof. As  P(
⇥L/K

P

⇤
) is the Frobenius automorphism x 7! xN(p), clearly

⇥L/K
P

⇤
satis-

fies the congruence equation (2.2.1). For uniqueness, suppose that � 2 G satisfies
(2.2.1). In particular, if ↵ 2 P, then ↵N(p)

2 P and so

�(↵) ⌘ 0 (modP) 8↵ 2 P.

Hence �(P) ✓ P, that is, P | �(P). But �(P) is a prime ideal of OL, so actually
�(P) = P. Hence � 2 D(P|p). As � satisfies (2.2.1), we have

 P(�)(x) = xN(p)
8x 2 FP,

and thus  P(�) is the Frobenius automorphism of Gal(FP/Fp). But  P is injective
and  P(

⇥L/K
P

⇤
) is also the Frobenius automorphism, so actually � =

⇥L/K
P

⇤
.

Proposition 2.27. Assume the same notation as Definition 2.25. For each � 2 G,
⇥L/K
�(P)

⇤
= �

⇥L/K
P

⇤
��1.

Proof. Let � 2 G. Let ↵ 2 OL. As ��1(↵) 2 OL, we know that
⇥L/K

P

⇤�
��1(↵)

�
⌘
�
��1(↵)

�N(p)
(modP)

from Proposition 2.26. In other words, we have
⇥L/K

P

⇤�
��1(↵)

�
�
�
��1(↵)

�N(p)
2 P,

and applying the isomorphism �, we get

�(P) 3 �
⇣⇥L/K

P

⇤�
��1(↵)

�
�
�
��1(↵)

�N(p)
⌘

= �
⇣⇥L/K

P

⇤�
��1(↵)

�⌘
�

⇣
�
�
��1(↵)

�⌘N(p)

=
⇣
�
⇥L/K

P

⇤
��1
⌘
(↵)� ↵N(p).

Hence ⇣
�
⇥L/K

P

⇤
��1
⌘
(↵) ⌘ ↵N(p) (mod�(P)) 8↵ 2 OL,

and by the uniqueness part of Proposition 2.26, the result follows.

Definition 2.28 (Frobenius class and Artin symbol). Let L/K be a Galois exten-
sion of number fields, and let p be a prime ideal of OK which is unramified in OL.

1This symbol was introduced by Hasse (see [12, pp. 280, Footnote 12]), but is not standard.
Some texts use �P or FrobP.
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Let P denote the set of all prime ideals of OL above p. The set of Frobenius elements
of all of the prime ideals in P is called the Frobenius class of p in the extension
L/K, and is denoted by the Artin symbol1

�L/K
p

�
=
n⇥L/K

P

⇤
: P 2 P

o
.

Proposition 2.29. Assume the same notation as Definition 2.28. Then for each
P 2 P , the Frobenius class

�L/K
p

�
is the conjugacy class of

⇥L/K
P

⇤
in G.

Proof. As G acts transitively on P (Proposition 2.16), we may write

�L/K
p

�
=
n⇥L/K

�(P)

⇤
: � 2 G

o
,

and by Proposition 2.27, this becomes
�L/K

p

�
=
n
�
⇥L/K

P

⇤
��1 : � 2 G

o
,

which is, by definition, the conjugacy class of
⇥L/K

P

⇤
in G.

Remark 2.30. If G is abelian, then each conjugacy class of G contains a single
element. In particular, this implies that each Frobenius class

�L/K
p

�
contains a single

element, which we will denote by
⇥L/K

p

⇤
. To help remember the notation, a symbol

with square brackets always refers to a single element of G (including the symbol
for the Artin map, which will be introduced in Definition 3.20), whilst the Artin
symbol (which is written with parentheses) refers to a conjugacy class of G.
Proposition 2.31. Let L/K be a Galois extension of number fields, and let M be
an intermediate field of this extension. Let p, q and P be non-zero prime ideals of
OK, OM, and OL respectively, with P above q, and q above p. Then

⇥L/M
P

⇤
=
⇥L/K

P

⇤f(q|p)
.

If M/K is also Galois, then ⇥M/K
q

⇤
=
⇥L/K

P

⇤��
M.

Remark 2.32. As p is unramified in OL, it is also unramified in OM (Proposi-
tion 2.5), so if M/K is Galois, then the Frobenius element

⇥M/K
q

⇤
is indeed defined.

Proof. We begin by showing that
⇥L/K

P

⇤f(q|p)
=
⇥L/M

P

⇤
. As this involves two different

base fields M and K, we will use the original notation  P|q : D(P|q) ! Gal(FP/Fq)
and  P|p : D(P|p) ! Gal(FP/Fp), rather than the simpler notation  P. We have

 P|p

⇣⇥L/K
P

⇤f(q|p)⌘
=  P|p(

⇥L/K
P

⇤
)f(q|p),

1This symbol was also introduced by Hasse (see [12, pp. 280, Footnote 12]). Like us, Hasse
used it to mean the conjugacy class of G associated to p, but this meaning is not standard.
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because  P|p is a group homomorphism. Now  P|p(
⇥L/K

P

⇤
) is, by definition, the

Frobenius automorphism x 7! xN(p) in Gal(FP/Fp). As N(q) = N(p)f(q|p), the
Frobenius automorphism x 7! xN(q) in Gal(FP/Fq) is related to the Frobenius auto-
morphism in Gal(FP/Fp) by

�
x 7! xN(p)

�f(q|p)
=
�
x 7! xN(q)

�
,

where the f(q|p)-th power on the left means the composition of x 7! xN(p) with
itself f(q|p) times. In other words,  P|p(

⇥L/K
P

⇤
)f(q|p) is the Frobenius automorphism

in Gal(FP/Fq). But  P|p(
⇥L/M

P

⇤
) =  P|q(

⇥L/M
P

⇤
) by Remark 2.21, and  P|q(

⇥L/M
P

⇤
) is,

by definition, the Frobenius automorphism in Gal(FP/Fq). Hence

 P|p(
⇥L/M

P

⇤
) =  P|p

⇣⇥L/K
P

⇤f(q|p)⌘
.

As  P|p is a bijection, the first part of the proposition follows.
We now prove the second part of the proposition. Suppose that M/K is Galois.

First, we show that
⇥L/K

P

⇤��
M lies in the domain D(q|p) of the function  q (=  q|p).

As
⇥L/K

P

⇤��
M is a K-embedding of M and the extension M/K is Galois,

⇥L/K
P

⇤��
M is

actually a K-automorphism of M and thus it is in Gal(M/K). But
⇥L/K

P

⇤
is in

D(P|p), so it fixes P, and thus also q because q ✓ P. Hence
⇥L/K

P

⇤��
M fixes q, and

thus it is in D(q|p).
We wish to show that

⇥L/K
P

⇤��
M =

⇥M/K
q

⇤
. To do this, we will show that  q(

⇥L/K
P

⇤��
M)

is the Frobenius automorphism in Gal(Fq/Fp). But the Frobenius automorphism
x 7! xN(p) in Gal(Fq/Fp) is the restriction to Fq of the Frobenius automorphism x 7!

xN(p) in Gal(FP/Fp), and  P(
⇥L/K

P

⇤
) is by definition the Frobenius automorphism

in Gal(FP/Fp). Hence, it suffices to show that  q(
⇥L/K

P

⇤��
M) =  P(

⇥L/K
P

⇤
)
��
Fq
, or

equivalently, that
◆ � q(

⇥L/K
P

⇤��
M) =  P(

⇥L/K
P

⇤
) � ◆,

where ◆ : Fq ,! FP is the embedding of Fq into FP. For all ↵ 2 OM, we have

◆
�
 q(
⇥L/K

P

⇤��
M)(↵ + q)

�
= ◆
�⇥L/K

P

⇤��
M(↵) + q

�
=
⇥L/K

P

⇤��
M(↵) +P

=
⇥L/K

P

⇤
(↵) +P =  P(

⇥L/K
P

⇤
)(↵ +P) =  P(

⇥L/K
P

⇤
)
�
◆(↵ + q)

�
,

and so ◆ � q(
⇥L/K

P

⇤��
M) =  P(

⇥L/K
P

⇤
) � ◆.

2.3 Dirichlet density
Chebotarev’s density theorem is a statement about the frequency of prime ideals
with a certain property, amongst all of the prime ideals of the ring of integers
of an algebraic number field. The various notions of density are mathematical
formulations of this idea of frequency, one such notion being that of natural density.
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Definition 2.33 (Natural density). Let K be a number field, and let A ✓ P (K).
The natural density d(A) of A (in P (K)) is defined by the limit

d(A) = lim
n!1

|{p 2 A : N(p) 6 n}|

|{p 2 P (K) : N(p) 6 n}|
,

whenever the limit exists.
There is another kind of density called the Dirichlet density, which is less obvi-

ously related to the notion of frequency. One can show that if the natural density of
a set of prime ideals exists, then so does its Dirichlet density, and the two densities
have the same value. Chebotarev’s density theorem holds if one uses either natural
density or Dirichlet density, and, by the remark in the previous sentence, it suffices
to prove only the case for natural density. However, in this thesis, we will only
consider Dirichlet density because it is easier to work with than natural density.
Definition 2.34 (Dirichlet density). Let K be a number field, and let A ✓ P (K).
The Dirichlet density �(A) of A (in P (K)) is defined by the limit

�(A) = lim
�!1+

P
p2A N(p)��

P
p2P (K) N(p)��

,

whenever it exists (the sums converge when � 2 (1,1), see Proposition 2.40).
Remark 2.35. We adopt the convention that � will always be a real variable,

whilst s = � + it will always be a complex variable with real part � and imaginary
part t. In the above definition, by � ! 1+, we mean for the limit to be taken over �
in the subspace (1,1) of the metric space R. In Chapter 4, we will consider limits
as s ! 1+, by which we mean for such a limit to be taken over s in right half-plane

H(1) = {s 2 C : Re(s) > 1},

which is a subspace of the metric space C. Certainly, if such a certain complex limit
exists, then the corresponding real limit must also exist and take the same value.

Remark 2.36. The above definition of Dirichlet density involved sums indexed
by sets. Throughout this thesis, we will encounter many such sums and products.
Such sums are defined as follows, and the definition for such products is similar.
Definition 2.37. Let (ai)i2I be a sequence of complex numbers indexed by a count-
able set I. If

P
1

k=1 af(k) is absolutely convergent for some enumeration f : Z+
! I

of I, then we define
X

i2I

ai =
1X

k=1

af(k).

We require absolute convergence in the above definition so that the value of the
sum or product is independent of the particular enumeration order of its terms �
we will refer to this property as generalised commutativity. To use these definitions
for sums and products indexed by sets of ideals, we need the following result.
Proposition 2.38. Let K be a number field. Then IK is countable.
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Proof. The set P (K) is countable as it is the countable union, over all prime num-
bers p, of the finitely many prime ideals of OK above pZ. Hence, IK is the countable
union, over all natural numbers n, of the countably many non-zero fractional ideals
whose unique prime ideal factorisations have n factors (counting multiplicity).

On occasion, we also use a property of absolutely convergent sums and products
that we call generalised associativity, formalised for sums in the following theorem.
Theorem 2.39 (Generalised associativity). Let (ai)i2I be a sequence of complex
numbers, indexed over a countable index set I. Let (Ij)j2J be a partition of I into
index sets Ij, where J is also a countable index set. For each j 2 J , let

Sj =
X

i2Ij

ai

Then the series
P

i2I
ai converges absolutely, if and only if each of the series Sj

converges absolutely and the series
P

j2J
Sj converges absolutely. In this case,

X

i2I

ai =
X

j2J

Sj =
X

j2J

⇣X

i2Ij

ai
⌘
.

Generalised associativity allows us to regroup the terms of an absolutely convergent
sum or product however we like, hence the name. For a more through discussion
of the rearrangement properties of absolutely convergent series, and proofs of the
results that we have just stated, consult Knopp [19, §16].

In light of the above discussion, provided that the series in the numerator and
denominator of the limit defining the Dirichlet density actually converge, then
they will converge absolutely because N(p)�� is a positive real number whenever
� 2 (1,1). To make sense of the limit, they must at least converge on some neigh-
bourhood of the limit point 1 inside of the interval (1,1) � i.e. on some open
interval of the form (1, 1+ ✏). We will actually show they converge on all of (1,1).
Proposition 2.40. Let K be a number field, and let A ✓ P (K). Then the series

X

p2A

N(p)��

converges for all � 2 (1,1).

Proof. As A ✓ P (K), it suffices to show that the sum
P

p2P (K) N(p)�� converges.
By generalised associativity (Theorem 2.39), it suffices in turn to show:

• for each prime number p, the convergence of the series
P

p|pOK
N(p)��, taken

over all prime ideals p of OK lying over pZ; and
• the convergence of the series

P
p

P
p|pOK

N(p)��.
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As there are only finitely many prime ideals p above each prime ideal pZ, each of the
series

P
p|pOK

N(p)�� is a finite sum and so converges trivially. Let n = [K : Q]. As
f(p|pZ) > 1, and there are at most n prime ideals p above a given prime ideal pZ,

X

p

X

p|pOK

1

N(p)�
=
X

p

X

p|pOK

1

pf(p|pZ)�
6
X

p

X

p|pOK

1

p�
6 n

X

p

1

p�
< n

1X

j=1

1

j�
.

The right-most series is a convergent p-series with p = � > 1, and thus the series
on the left-hand side converges by comparison.

At this point, we have all we need to understand the statement of Chebotarev’s
density theorem (Theorem 2.1). In the rest of this section, we will introduce the
related notions of upper and lower Dirichlet densities, which we will use when we
prove the abelian case of Chebotarev’s density theorem.

2.3.1 Limit superior and inferior of real valued functions at a point
The proof of the abelian case of Chebotarev’s density theorem (Chapter 6), relies
heavily on the notions of upper Dirichlet density and lower Dirichlet density. The
upper (resp. lower) Dirichlet density is defined similarly to the (ordinary) Dirich-
let density, but with the limit at a point replaced with the limit superior (resp.
inferior) at the point. The limit superior and inferior of a real valued function at
a point are less frequently encountered in introductory analysis courses and text-
books than their cousins, the limit superior and inferior of sequences. To this end,
for the reader’s convenience, we briefly recall here their definitions and important
properties. For proofs, see §5.3 of Beberian [6].
Definition 2.41 (Point limit superior and inferior). Let (X, d) be a metric space.
For all a 2 X and all r > 0, the punctured ball in X with center a and radius r is

B�(a, r) = {x 2 X : 0 < d(x, a) < r}.

If Y ✓ X, f : Y ! R, and a 2 X is a limit point of Y , then
• the limit superior of f as x ! a in X is given by

lim
x!a

f(x) = lim
r!0+

⇣
sup

x2B�(a,r)
f(x)

⌘
,

• the limit inferior of f as x ! a in X is given by

lim
x!a

f(x) = lim
r!0+

⇣
inf

x2B�(a,r)
f(x)

⌘
.

The limit superior and inferior enjoy the following properties.
Proposition 2.42. Let (X, d) be a metric space, let Y ✓ X, let f, g : Y ! R, and
let a 2 X be a limit point of Y . Then the following properties hold:
(1) lim

x!a

f(x) and lim
x!a

f(x) always exist (we allow the values ±1).

(2) lim
x!a

f(x) 6 lim
x!a

f(x).

(3) lim
x!a

f(x) exists if and only if lim
x!a

f(x) = lim
x!a

f(x). In this case, all are equal.

26



(4) lim
x!a

�
f(x) + g(x)

�
6 lim

x!a

f(x) + lim
x!a

g(x).
(5) lim

x!a

�
f(x) + g(x)

�
> lim

x!a

f(x) + lim
x!a

g(x).

(6) lim
x!a

�
�g(x)

�
= � lim

x!a

g(x).

We will also need the following result.
Proposition 2.43. Let (X, d) be a metric space, let Y ✓ X, let f, g : Y ! R, and
let a 2 X be a limit point of Y . Then

lim
x!a

�
f(x) + g(x)

�
6 lim

x!a

f(x) + lim
x!a

g(x) 6 lim
x!a

�
f(x) + g(x)

�
.

Proof. By properties (4) and (6) of Proposition 2.42, we have

lim
x!a

g(x) = lim
x!a

�
f(x) + g(x)� f(x)

�

6 lim
x!a

�
f(x) + g(x)

�
+ lim

x!a

�
�f(x)

�

= lim
x!a

�
f(x) + g(x)

�
� lim

x!a

f(x),

and the right-hand inequality follows. The other inequality is proved similarly.

2.3.2 Upper and lower Dirichlet densities
We may now define the upper and lower Dirichlet densities.
Definition 2.44. Let K be a number field, and let A ✓ P (K).

• The upper Dirichlet density of A (in P (K)) is defined by the limit superior

�sup(A) = lim
�!1+

P
p2A N(p)��

P
p2P (K) N(p)��

.

• The lower Dirichlet density of A (in P (K)) is defined by the limit inferior

�inf(A) = lim
�!1+

P
p2A N(p)��

P
p2P (K) N(p)��

.

Remark 2.45. By lim�!1+ and lim
�!1+ , we mean X = R, Y = (1,1), and a = 1

with respect to the notation in Definition 2.41.
By Proposition 2.42, the upper and lower Dirichlet densities have the following

properties.
Proposition 2.46. Let K be a number field. Let A ✓ P (K). Then
(1) 0 6 �inf(A) 6 1, 0 6 �sup(A) 6 1, and if �(A) exists then 0 6 �(A) 6 1;
(2) �inf(A) 6 �sup(A);
(3) �(A) exists if and only if �inf(A) = �sup(A), in which case all three are equal;
(4) �

�
P (K)

�
= �inf

�
P (K)

�
= �sup

�
P (K)

�
= 1; and

(5) �(;) = �inf(;) = �sup(;) = 0.
Proposition 2.47. Let K be a number field. Let A,B ✓ P (K) be disjoint. Then
(1) �sup(A [B) 6 �sup(A) + �sup(B);
(2) �inf(A [ B) > �inf(A) + �inf(B);
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(3) �inf(A [ B) 6 �inf(A) + �sup(B) 6 �sup(A [ B); and
(4) if any two of the three Dirichlet densities �(A[B), �(A) and �(B) exists, then

so does the third, in which case �(A [B) = �(A) + �(B).

Proof. As A and B are disjoint, we have the equality
P

p2A[B
N(p)��

P
p2P (K) N(p)��

=

P
p2A N(p)��

P
p2P (K) N(p)��

+

P
p2B N(p)��

P
p2P (K) N(p)��

for all � 2 (1,1). Properties (1) and (2) follow, respectively, from properties (4)
and (5) of Proposition 2.42. Property (3) follows from Proposition 2.43. Prop-
erty (4) follows by taking the (ordinary) limit as � ! 1+.

Remark 2.48. If �(A [ B) exists, then property (3) of Proposition 2.46 and
property (3) of Proposition 2.47 together imply that

�(A [ B) = �inf(A [B) 6 �inf(A) + �sup(B) 6 �sup(A [ B) = �(A [ B).

Hence, in this case, actually �(A [B) = �inf(A) + �sup(B).

2.4 The Frobenius density theorem
At the start of this chapter, we said that we would return to generalise Example 2.4.
Its generalisation is the Frobenius density theorem (mentioned in Chapter 1). In
this section, we will state the Frobenius density theorem, explore the relationship
between decomposition type and cycle type, and then show that the Frobenius
density theorem is implied by Chebotarev’s density theorem.

Let K be a number field. Let h 2 OK[X] be monic of degree n, with distinct roots
↵1, . . . ,↵n in C. Let L be the splitting field of h over K, that is, L = K(↵1, . . . ,↵n).
As h is monic and has algebraic integer coefficients, its roots are algebraic integers,
so actually ↵1, . . . ,↵n 2 OL. Hence, in OL[X],

h = (X � ↵1)(X � ↵2) . . . (X � ↵n).

Let A = {↵1, . . . ,↵n}. As L is the splitting field of h over K, the restriction of
each element of Gal(L/K) to A is a permutation of A. The cycle type of an element
� 2 Gal(L/K) is the unordered list of the lengths of the cycles in a disjoint cycle
decomposition of �|

A
. Given � 2 Gal(L/K) with a disjoint cycle decomposition

�
↵k(1,1) · · · ↵k(1,f(1))

�
· · ·
�
↵k(g,1) · · · ↵k(g,f(g))

�
,

and ⌧ 2 Gal(L/K), it is well known that ⌧�⌧�1 has a disjoint cycle decomposition
�
⌧(↵k(1,1)) · · · ⌧(↵k(1,f(1)))

�
· · ·
�
⌧(↵k(g,1)) · · · ⌧(↵k(g,f(g)))

�
.

Hence conjugate elements of Gal(L/K) have the same cycle type.
The decomposition type of a non-zero prime ideal p of OL (which we will also

refer to as the decomposition type of h modulo p) is the unordered list of the degrees
of the irreducible factors of h in Fp[X], where h denotes the polynomial in Fp[X]
obtained by reducing the coefficients of h modulo p.
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Frobenius proved [14] the following result in the case that K = Q.
Theorem 2.49 (Frobenius density theorem). Assume the above notation. Let
f1, . . . , fg be positive integers which sum to n. Let

P =
�
p 2 P (K) : p of decomposition type f1, . . . , fg

 
,

C =
�
� 2 Gal(L/K) : � of cycle type f1, . . . , fg

 
.

Then
�(P ) =

|C|

|Gal(L/K)|
.

Example 2.50. Example 2.4 provides empirical evidence that the Frobenius dens-
ity theorem holds in the case that h = X3

� 2 and K = Q.
In order to deduce the Frobenius density theorem from Chebotarev’s density

theorem, we need the following result.
Proposition 2.51. Let p be a non-zero prime ideal of OK that is unramified in OL,
and which does not divide the ideal hdisc(h)i of OK. Then the decomposition type
of p is the same as the cycle type of

�L/K
p

�
.

Remark 2.52. Recall, given a field F (not necessarily a number field), that the
discriminant of a polynomial h 2 F[X] is defined by

disc(h) = an
2n�2

Y

16i<j6n

(↵i � ↵j)
2

where n is the degree of h, an is the leading coefficient of h, and ↵1, . . . ,↵n are the
roots of h in some algebraic closure of F. Clearly h has distinct roots if and only if
disc(h) 6= 0. One can show that disc(h) 2 F.

Proof of Proposition 2.51. It suffices to show that the decomposition type of p is
the same as the cycle type of

⇥L/K
P

⇤
, where P is a prime ideal of OL above p. For

each � 2 OL, let � 2 FP denote the reduction of � modulo P, that is, � = � +P.
Let h 2 FP[X] denote the polynomial obtained by reducing the coefficients of h
modulo P. Then, in FP[X],

h = (X � ↵1)(X � ↵2) . . . (X � ↵n).

Let A = {↵1, . . . ,↵n}. As disc(h) /2 p, we have

disc(h) = disc(h) 6= 0,

and so the roots ↵1, . . . ,↵n of h are distinct. In other words, the quotient morphism
OL ! FP restricts to a bijection ⇡ : A ! A. Let � be the Frobenius automorphism
� 7! �

N(p) of the extension FP/Fp. The diagram of bijections

A A

A A

⇡

⇥L/K
P

⇤���
A

�|
A

⇡
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commutes by the definition of
⇥L/K

P

⇤
(Definition 2.25). So, the action of

⇥L/K
P

⇤
on A

is the same (up to relabelling) as the action of � on A, and so the cycle types of⇥L/K
P

⇤
and � are the same.

We will think of Fp[X] as a subring of FP[X] via the embedding Fp ,! FP given
by � + p 7! � +P. In this sense, h 2 Fp[X] as the coefficients of h are in OK. Let

h = h1 h2 · · ·hg

be the irreducible factorisation of h in Fp[X], and let fi be the degree of hi for
each integer i in the range 1 6 i 6 g. By definition, the decomposition type of
p is the unordered list f1, . . . , fg. As the roots ↵1, . . . ,↵n are distinct, so are the
polynomials h1, . . . , hg.

To show that the cycle type of the action of � on A is f1, . . . , fg, it suffices to
show, for each integer i in the range 1 6 i 6 g, that � permutes the roots of hi

in a cycle (the length of which will be fi). Let ↵ be one of the roots of hi. The
Galois group Gal(FP/Fp) is generated by the Frobenius automorphism �. As hi is
an irreducible polynomial in Fp[X] which completely splits in FP, the Galois group
Gal(FP/Fp) acts on the roots of hi � so �k(↵) is a root of hi for each integer k,
and this action is transitive � so each root of hi is of the form �k(↵). Hence the
elements of the cycle of ↵ under � are precisely the roots of hi.

Remark 2.53. As above (and still assuming that h has distinct roots), let

h = h1 h2 · · ·hg

be the irreducible factorisation of h in Fp[X], and let fi be the degree of hi. Let
↵ be any root of h. Under some extra assumptions (for example, it suffices that
OK(↵) = OK[↵]), the Dedekind–Kummer theorem (Theorem 27 in Marcus [28]) says
that the prime ideal factorisation of pOK(↵) in OK(↵) is given by

pOK(↵) = q1q2 · · · qg,

where, for each integer i satisfying 1 6 i 6 g, the prime ideal qi may be defined by

qi = hp, hi(↵)i

for any lift hi of hi to OK[X], and f(qi|p) = fi. Given an intermediate field M of
the extension L/K, define the splitting type of p in OM to be the unordered list
of the inertial degrees of the prime ideal factors of pOM. The Dedekind–Kummer
theorem says that the decomposition type of h modulo p and the splitting type of
p in OK(↵) are the same. In other words, we may reinterpret the Frobenius density
theorem as a statement about how the non-zero prime ideals p of OK split in OK(↵).

We now have everything that we need to deduce the Frobenius density theorem
(Theorem 2.49) from Chebotarev’s density theorem (Theorem 2.1).
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Proof of Theorem 2.49. We have

�(P ) = �
��

p 2 P (K) : p of decomposition type f1, . . . , fg
 �

= �

 (
p 2 P (K) :

p unramified in OL, p - hdisc(h)i,
p of decomposition type f1, . . . , fg

)!

= �

 (
p 2 P (K) :

p unramified in OL, p - hdisc(h)i,
�L/K

p

�
of cycle type f1, . . . , fg

)!

= �
��

p 2 P (K) : p unramified in OL,
�L/K

p

�
of cycle type f1, . . . , fg

 �
.

Indeed, the third equality follows from Proposition 2.51. For the second and fourth
equalities, note that there are only finitely many prime ideals which are ramified
in OL (Corollary 2.8), and there are only finitely many prime ideals which divide
the OK-ideal hdisc(h)i. These equalities follow because the density of a finite set is
zero (we will1 prove this in Corollary 4.35), and the density of a disjoint union is
the sum of the densities of the sets in the union (Proposition 2.47).

Recall that C is the set of elements of Gal(L/K) of cycle type f1, . . . , fg. From
our earlier discussion, C is a disjoint union of conjugacy classes of Gal(L/K), say
C1, . . . , Cr. Hence, by Chebotarev’s density theorem,

�(P ) =
rX

j=1

�
��

p 2 P (K) : p unramified in OL,
�L/K

p

�
= Cj

 �

=
rX

j=1

|Cj|

|Gal(L/K)|
=

|C|

|Gal(L/K)|
.

Remark 2.54. To prove his density theorem, Frobenius actually proved a stronger
result, the statement of which is similar to that of Chebotarev’s density theorem,
except, rather than considering the prime ideals whose Artin symbol is a given con-
jugacy class of the Galois group, he considered the prime ideals whose Artin symbol
is contained in a given division of the Galois group. The division of an element � of a
group G is the union of the conjugacy classes of the generators of h�i. The partition
of a group into its conjugacy classes is a refinement of its partition into its divisions,
and this refinement can be strict. For example, {�, ��1

} and {�2, ��2
} are different

conjugacy classes of D5 = h�, ⌧ | �5 = ⌧ 2 = 1, �⌧� = ⌧i, but {�, ��1, �2, ��2
}

is a division of D5. Also, the partition of a subgroup of Sn into its divisions is a
refinement of its partition by cycle types, and, again, this refinement can be strict.
For example, (12)(34) and (13)(24) have the same cycle type, but h(12)(34)i and
h(13)(24)i are not conjugate subgroups of V = {1, (12)(34), (13)(24), (14)(23)}. As
there are polynomials in Q[X] with the Galois groups V (e.g. X4 + 36X + 63),
and D5 (e.g. X5

� 5X + 12), the strong version of the Frobenius density theorem
is indeed stronger than the version stated earlier, but weaker than Chebotarev’s
density theorem.

1The argument is not circular as the Frobenius density theorem will not be used in later proofs.
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Chapter 3

Cyclotomic extensions, ray class groups and
Artin reciprocity

Modern proofs of Chebotarev’s density theorem use Artin’s law of reciprocity, an
important result in class field theory, to deduce the abelian case of Chebotarev’s
theorem, and follow with an argument like ours in Theorem 5.1 to extend the result
to an arbitrary extension of number fields. Our proof of Chebotarev’s density the-
orem is more elementary than this, similar in spirit to Chebotarev’s original proof.
We will show that Chebotarev’s density theorem holds for cyclotomic extensions
(along the way proving a part of Artin reciprocity for cyclotomic extensions), and
then we will deduce the abelian case using a method similar to Chebotarev’s field
“crossing” argument.

In Section 3.2, we will see that (a stronger version of) Dirichlet’s theorem on
prime numbers in arithmetic progressions may be stated as a result about the field
extension Q(⇣)/Q where ⇣ is a primitive m-th root of unity. Seen in this way,
it says, for all � 2 Gal(Q(⇣)/Q), that 1/'(m) is the density of the set of prime
ideals pZ unramified in Q(⇣) whose Artin symbol satisfies

�Q(⇣)/Q
pZ
�
= {�}. Recall,

Gal(Q(⇣)/Q) ⇠= (Z/mZ)⇥ and '(m) = |(Z/mZ)⇥| is the Euler totient function. It
is traditionally proved by considering the behaviour of the Dirichlet L-functions

L(s,�) =
1X

n=1
gcd(n,m)=1

�(n+mZ)
ns

near s = 1, which are defined for each character � of the group (Z/mZ)⇥. The cyc-
lotomic case of Chebotarev’s density theorem is a direct generalisation of Dirichlet’s
theorem on prime numbers in arithmetic progressions to an arbitrary cyclotomic ex-
tension of number fields L/K, that is, one where L ✓ K(⇣) for some root of unity ⇣.
For our purposes, the notion of the ray class group from class field theory, which
we introduce in Section 3.4, is the “correct” generalisation of the group (Z/mZ)⇥,
giving us the Weber L-functions which we will use in our proof of the cyclotomic
case of Chebotarev’s density theorem (in the next chapter) in an analogous way to
the use of the Dirichlet L-functions in the traditional proof of Dirichlet’s theorem
on prime numbers in arithmetic progressions.

3.1 Cyclotomic extensions
In this section, we review some basic properties of cyclotomic extensions, following
Goldstein [15, p. 96].
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Let m be a positive integer. An m-th root of unity is a root of the polynomial
Xm

� 1 in C. The m-th roots of unity form a cyclic multiplicative group, whose
generators are called primitive m-th roots of unity. If ⇣ is a primitive m-th root of
unity, then ⇣k is a primitive m-th root of unity if and only if gcd(k,m) = 1.
Definition 3.1. A cyclotomic extension is an extension of number fields L/K such
that L ✓ K(⇣) for some root of unity ⇣ 2 C.

Remark 3.2. The other common definition of a cyclotomic extension requires
that L = K(⇣) for some root of unity ⇣, and thus is more restrictive than our
definition. Lang [21], and Fried and Jarden [13], use the same definition as us.
Proposition 3.3. Let K be a number field. Let ⇣ and ⇣ 0 be primitive m-th roots of
unity. Then K(⇣) = K(⇣ 0).

Proof. As ⇣ is primitive, ⇣ 0 is a power of ⇣, and so ⇣ 0 2 K(⇣). Also K ✓ K(⇣), so
K(⇣ 0) ✓ K(⇣). The other inclusion follows by the symmetry of ⇣ and ⇣ 0.

We begin by studying the Galois groups of cyclotomic extensions.
Proposition 3.4. Let K be a number field, and let ⇣ 2 C be a primitive m-th root
of unity. Then each � 2 Gal(K(⇣)/K) sends ⇣ to another primitive m-th root of
unity, say ⇣k(�) where 0 6 k(�) < m and gcd

�
k(�),m

�
= 1, and the map

◆ : Gal(K(⇣)/K) ,! (Z/mZ)⇥, � 7! k(�) +mZ,

is an injective group homomorphism.

Proof. Let � 2 Gal(K(⇣)/K). Then �(⇣)m = �(⇣m) = �(1) = 1, so �(⇣) is an m-th
root of unity. As ⇣ is a primitive m-th root of unity, there is a unique integer k(�)
in the range 0 6 k(�) < m such that �(⇣) = ⇣k(�). Assume, for a contradiction,
that the order n of �(⇣) is less than m. As �(⇣)n = 1, we have �(⇣n) = �(1), and
so ⇣n = 1 because � is an isomorphism. As the order of ⇣ is m, and m > n, this
is a contradiction. Hence �(⇣) is a primitive m-th root of unity, and it follows that
k(�) and m are coprime. So ◆ does actually map into (Z/mZ)⇥. As each element
of Gal(K(⇣)/K) is uniquely determined by where it sends ⇣, the map ◆ is injective.
For each �, ⌧ 2 Gal(K(⇣)/K), we have

⇣k(�⌧) = (�⌧)(⇣) = �
�
⌧(⇣)

�
= �

�
⇣k(⌧)

�
= �(⇣)k(⌧) = ⇣k(�)k(⌧),

and so ◆(�⌧) = ◆(�)◆(⌧) as ⇣ has order m. Hence ◆ is a group homomorphism.

A field extension is abelian if it is Galois and its Galois group is abelian.
Corollary 3.5. All cyclotomic extensions are abelian.

Proof. Let L/K be a cyclotomic extension of number fields. Then L ✓ K(⇣), where
⇣ 2 C is a primitive m-th root of unity for some positive integer m. As all m-th roots
of unity are in K(⇣) (they are all powers of ⇣), K(⇣) is the splitting field of Xm

� 1
over K, and so K(⇣)/K is Galois. By Proposition 3.4, Gal(K(⇣)/K) is isomorphic to
a subgroup of the abelian group (Z/mZ)⇥, and thus is itself an abelian group. As
all subgroups of an abelian group are normal, the fundamental theorem of Galois
theory says that the intermediate extension L/K is Galois, and that it is a quotient
group of Gal(K(⇣)/K). The latter statement means that Gal(L/K) is abelian.
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Corollary 3.6. If K is a number field, and ⇣ 2 C is a primitive m-th root of unity,
then [K(⇣) : K] 6 '(m), where '(m) = |(Z/mZ)⇥| is Euler’s totient function.

Proof. This holds because K(⇣)/K is Galois and ◆ is injective.

The following result is used multiple times in the rest of this section.
Proposition 3.7. Let ⇣ 2 C be a primitive m-th root of unity. Then

Y

06j,k<m

j 6=k

(⇣j � ⇣k) = (�1)m�1mm.

Proof. We have

Xm
� 1 =

m�1Y

k=0

(X � ⇣k). (3.1.1)

Differentiating both sides, we get

mXm�1 =
m�1X

i=0

m�1Y

j=0
j 6=i

(X � ⇣j).

Setting X = ⇣k, it follows that

m(⇣k)m�1 =
m�1Y

j=0
j 6=k

(⇣k � ⇣j).

Taking the product of both sides over all integers k in the range 0 6 k < m, we get

mm

 
m�1Y

k=0

⇣k
!m�1

=
Y

06j,k<m

j 6=k

(⇣k � ⇣j).

But, equating the constant terms of (3.1.1), we see that

(�1)m�1 =
m�1Y

k=0

⇣k.

As a2 ⌘ a (mod 2) for all integers a, it follows that

mm

 
m�1Y

k=0

⇣k
!m�1

= mm(�1)(m�1)2 = mm(�1)m�1.

Proposition 3.8. Let ⇣ 2 C be a primitive m-th root of unity, and let f 2 Z[X]
be its minimal polynomial over Q. Then the roots of f in C are precisely the '(m)
primitive m-th roots of unity, and [Q(⇣) : Q] = '(m).
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Proof. Let n = [Q(⇣) : Q], which is the degree of f . Then n = |Gal(Q(⇣)/Q)| as
Q(⇣)/Q is Galois, and so n 6 '(m) by Corollary 3.6.

As Q(⇣)/Q is Galois, Gal(Q(⇣)/Q) acts transitively on the roots of f . Thus
each root of f is of the form �(⇣) for some � 2 G. That is, by Proposition 3.4, each
root of f is of the form ⇣j for some integer j 2 {1, . . . ,m}, and so

f(X) =
Y

j2J

(X � ⇣j) (3.1.2)

for some J ✓ {1, . . . ,m} (the roots of f are distinct as f is irreducible over Q).
We will show that if f(⇣j) = 0 and p is a prime number not dividing m, then

f(⇣jp) = 0. Suppose that f(⇣j) = 0 and f(⇣jp) 6= 0. By (3.1.2), f(⇣jp) is a sub-
product of the product given in Proposition 3.7. In other words, f(⇣jp) divides mm

in Z[⇣]. However, p divides the polynomial f(Xp)� f(X)p in Z[X] (reduce modulo
p the expansion of f(X)p using

�
k

p

�
⌘ 0 (mod p), which holds when 0 < k < p,

and then apply kp
⌘ k (mod p)), and so p divides f(⇣jp)� f(⇣j)p = f(⇣jp) in Z[⇣].

Together, this means that p divides mm in Z, and thus p divides m in Z.
Let a be a positive integer coprime to m. Let a = p1p2 · · · pk be the prime

factorisation of a (the pi may not be distinct). Let a0 = 1 and ai = ai�1pi for each
integer i 2 {1, . . . , k}, so that a = ak. Clearly f(⇣a0) = f(⇣) = 0. If f(⇣ai�1) = 0,
then the previous paragraph implies that f(⇣ai) = f(⇣ai�1pi) = 0. By induction,
f(⇣a) = 0. It follows that all '(m) primitive m-th roots of unity are roots of f , and
so n > '(m). Hence n = '(m), and these are precisely the roots of f .

Corollary 3.9. If K = Q, the map ◆ from Proposition 3.4 is an isomorphism.

Proof. As ◆ is injective and |Gal(Q(⇣)/Q)| = |(Z/mZ)⇥|, ◆ is surjective.

Proposition 3.10. Let m and n be coprime positive integers, and let ⇣m, ⇣n and
⇣mn be primitive m-th, n-th, and (mn)-th roots of unity respectively. Then

Q(⇣m, ⇣n) = Q(⇣mn) and Q(⇣m) \Q(⇣n) = Q.

Proof. As ⇣m and ⇣n are both mn-th roots of unity, Q(⇣m, ⇣n) ✓ Q(⇣mn). We now
show the other inclusion. As ⇣m

mn
is a n-th root of unity, ⇣m

mn
= ⇣k

n
for some integer k.

Similarly, ⇣n
mn

= ⇣j
m

for some integer j. By Bézout’s theorem, there are integers u
and v such that um+ nv = gcd(m,n) = 1. Hence

⇣mn = (⇣m
mn

)u(⇣n
mn

)v = (⇣k
n
)u(⇣j

m
)v 2 Q(⇣m, ⇣n),

and so Q(⇣mn) ✓ Q(⇣m, ⇣n).
As m and n are coprime, '(mn) = '(m)'(n). We have

[Q(⇣m, ⇣n) : Q] = [Q(⇣mn) : Q] = '(mn) = '(m)'(n) = [Q(⇣m) : Q] [Q(⇣n) : Q]

by Proposition 3.8, and so Q(⇣m) \Q(⇣n) = Q by Proposition 2.11.

We now study the ramification of prime ideals in cyclotomic extensions.
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Lemma 3.11. Let ⇣ 2 C be a primitive m-th root of unity. Suppose that p is a
prime number such that pZ ramifies in OQ(⇣). Then p divides m.

Proof. Let n = [Q(⇣) : Q], and let �1, . . . , �n be the elements of Gal(Q(⇣)/Q).
From the discussion in Section 2.1.5, we have the following. First, p divides
disc

�
Q(⇣)

�
. Second, as 1, ⇣, . . . , ⇣n�1 is a Q-basis of Q(⇣) consisting of algebraic

integers, disc
�
Q(⇣)

�
divides discQ(⇣)(1, ⇣, . . . , ⇣n�1). Finally,

discQ(⇣)(1, ⇣, . . . , ⇣
n�1) =

Y

16j,k6n

j 6=k

�
�j(⇣)� �k(⇣)

�
.

By Proposition 3.7, this last product divides (�1)m�1mm. Putting this all together,
p divides (�1)m�1mm, and thus p divides m as p is prime.

The next result generalises the above lemma to arbitrary cyclotomic extensions.
Proposition 3.12. Let K ✓ L ✓ K(⇣) be a tower of number fields, where ⇣ 2 C
is a primitive m-th root of unity. Suppose that p is a non-zero prime ideal of OK
which is ramified in OL. Then p divides mOK.

To prove this proposition, we need the following result, which we will use to
relate the inertia groups of K(⇣)/K with those of Q(⇣)/Q. Recall Proposition 2.9:
if M1 and M2 are number fields with a common subfield F, and M1/F is Galois,
then M1M2/M2 is also Galois and the map � : Gal(M1M2/M2) ! Gal(M1/F) given
by � 7! �|M1

is injective.
Lemma 3.13. Assume the notation from the previous paragraph. Let P be a non-
zero prime ideal of OM1M2, and let p, Q and q be the prime ideals under P of OM2,
OM1 and OF respectively. Then �

�
I(P|p)

�
✓ I(Q|q).

Proof. Let � 2 I(P|p), and let ↵ 2 OM1 . By the definition of I(P|p), �(↵)�↵ 2 P.
But as �|M1

2 Gal(M1/F), �(↵) is also in OM1 . Hence �(↵) � ↵ 2 P \ OM1 = Q.
As this holds for all ↵ 2 OM1 , �|M1

2 I(Q|q) by the definition of I(Q|q).

Proof of Proposition 3.12. As p is ramified in OL, it is also ramified in OK(⇣) (Pro-
position 2.5), so there is a prime ideal P of OK(⇣) above p with e(P|p) > 1. Let Q
and qZ be the prime ideals under P of OQ(⇣) and Z respectively. Setting F = Q,
M1 = Q(⇣) and M2 = K in the lemma, we get �

�
I(P|p)

�
✓ I(Q|qZ), and so

e(Q|qZ) = |I(Q|qZ)| > |I(P|p)| = e(P|p) > 1

because � is injective. Hence qZ is ramified in OQ(⇣). By Lemma 3.11, q divides m.
As p divides qOK, it follows that p divides mOK.

3.2 Dirichlet’s theorem on prime numbers in arithmetic progressions
In this section, we will explain how Dirichlet’s theorem on prime numbers in arith-
metic progressions is a special case of Chebotarev’s density theorem. We begin with
a statement of Dirichlet’s theorem.
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Theorem 3.14 (Dirichlet’s theorem). Let a and m be coprime integers, and let

Pa =
�
pZ : p is a prime number, p ⌘ a (modm)

 
.

Then the Dirichlet density of the set Pa exists, and satisfies

�(Pa) =
1

'(m)
,

where '(m) = |(Z/mZ)⇥| is Euler’s totient function.
Remark 3.15. Our statement here is stronger than the one that Dirichlet actually

proved, stated in Chapter 1, which only claimed that Pa is infinite. Example 2.2
provides empirical evidence for the particular instance of this result where m = 10.

The key to relating Dirichlet and Chebotarev’s theorems is the following result.
Proposition 3.16. Let K be a number field, and let ⇣ be a primitive m-th root of
unity. Let ◆ : Gal(K(⇣)/K) ,! (Z/mZ)⇥ be the map from Proposition 3.4. Let p be
a non-zero prime ideal of OK not dividing mOK. Then N(p) is coprime to m and

◆(
⇥K(⇣)/K

p

⇤
) = N(p) +mZ.

Remark 3.17. For
⇥K(⇣)/K

p

⇤
to be defined, we need p to be unramified in OK(⇣)

(Remark 2.30). This is true, by Proposition 3.12, because p does not divide mOK.
To prove the proposition, we need the following lemma.

Lemma 3.18. Let K be a number field, and let ⇣ 2 C be a primitive m-th root of
unity. Let P be a prime ideal of OK(⇣) not dividing mOK(⇣). Then

⇣k ⌘ ⇣j (modP) if and only if ⇣k = ⇣j.

Proof. The “if” direction is clear. Conversely, suppose that ⇣k ⌘ ⇣j (modP) and
assume, for a contradiction, that ⇣k 6= ⇣j. From Proposition 3.7, we know that that
⇣j � ⇣k divides mm in OK(⇣), and so mm

⌘ 0 (modP). This means that mm
2 P, so

mm
OK(⇣) ✓ P, and thus P divides mm

OK(⇣). But mm
OK(⇣) = (mOK(⇣))m and P is

a prime ideal, so P actually divides mOK(⇣), contradicting our choice of P.

Proof of Proposition 3.16. Let P be any prime ideal of OK(⇣) lying above p. Then⇥K(⇣)/K
p

⇤
=
⇥K(⇣)/K

P

⇤
. From Proposition 2.26, we know that

⇥K(⇣)/K
P

⇤
(⇣) ⌘ ⇣N(p) (modP).

But
⇥K(⇣)/K

P

⇤
(⇣) is an m-th root of unity (Proposition 3.4), and ⇣N(p) is also an m-

th root of unity. So long as P does not divide mOK(⇣), Lemma 3.18 implies that⇥K(⇣)/K
P

⇤
(⇣) = ⇣N(p), and the result follows. Assume that P divides mOK(⇣). Then

mOK(⇣) ✓ P, and so mOK ✓ mOK(⇣)\OK ✓ P\OK = p. This means that p divides
mOK, contradicting our choice of p.
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The following result is a corollary to Proposition 3.16. Here, Pa is the set defined
in Theorem 3.14, and ◆ : Gal(Q(⇣)/Q) ! (Z/mZ)⇥ is the embedding defined in
Proposition 3.4. Recall that ◆ is actually an isomorphism (Corollary 3.9).
Corollary 3.19. Let ⇣ be a primitive m-th root of unity. Let � 2 Gal(Q(⇣)/Q),
and let a be the integer coprime to m such that ◆(�) = a+mZ. Then the set

P� =
�
pZ : p is a prime number, p - m,

⇥Q(⇣)/Q
pZ
⇤
= �

 

and the set Pa are equal.

Proof. If p ⌘ a (modm), then p does not divide m as a and m are coprime. Let p be
a prime number not dividing m. As ◆ is an isomorphism (Corollary 3.9),

⇥Q(⇣)/Q
pZ
⇤
= �

if and only if ◆(
⇥Q(⇣)/Q

pZ
⇤
) = ◆(�). But ◆(

⇥Q(⇣)/Q
pZ
⇤
) = N(pZ) + mZ = p + mZ, and

◆(�) = a+mZ, so ◆(
⇥Q(⇣)/Q

pZ
⇤
) = ◆(�) if and only if p ⌘ a (modm).

In Chapter 4, we will show that Chebotarev’s density theorem holds for cyclo-
tomic extensions (Theorem 4.36), and also that finite sets of primes have Dirichlet
density zero (Corollary 4.35). Using these results1, we may now prove Dirichlet’s
theorem on prime numbers in arithmetic progressions.

Proof of Theorem 3.14. As Pa = P� where � = ◆�1(a + mZ) (Corollary 3.19), it
suffices to show that �(P�) = 1/'(m). Let

P 0

�
=
�
pZ 2 P (Q) : pZ is unramified in OQ(⇣),

⇥Q(⇣)/Q
pZ
⇤
= �

 
.

Chebotarev’s density theorem for the extension Q(⇣)/Q says that the Dirichlet
density �(P 0

�
) exists and equals 1/|Gal(Q(⇣)/Q)| = 1/'(m). Now P� ✓ P 0

�
by

Proposition 3.12. Also, P 0

�
\P� is finite because only finitely many primes divide m,

so �(P 0

�
\P�) = 0 by Corollary 4.35. From Proposition 2.47, as �(P 0

�
) and �(P 0

�
\P�)

exist, so does �(P�), and �(P 0

�
) = �(P�) + �(P 0

�
\P�). Hence 1/'(m) = �(P�).

3.3 The Artin map and cyclotomic extensions
Recall that

⇥L/K
p

⇤
was defined in the case that L/K is an abelian extension of num-

ber fields and that p is a non-zero prime ideal of OK that is unramified in OL
(Remark 2.30). Also recall that IK, the group of non-zero fractional ideals of OK,
is generated freely by the non-zero prime ideals of OK.
Definition 3.20. For each non-zero ideal m of OK, let I

m
K denote the subgroup

of IK generated by those prime ideals not dividing m (i.e. the group of non-zero
fractional ideals coprime to m). Then, provided that all non-zero prime ideals of
OK which are ramified in OL divide m, there is a unique group homomorphism

⇥L/K
·

⇤
m
: Im

K ! Gal(L/K)

which agrees with
⇥L/K

p

⇤
on the prime ideals in I

m
K . We call

⇥L/K
·

⇤
m

the Artin map
(or reciprocity map) of the extension L/K for the modulus m.

1There is no circular argument here as we will not use Dirichlet’s theorem on prime numbers
in arithmetic progressions until Chapter 6.
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Proposition 3.21. Let L/K be an abelian extension of number fields, and let M be
an intermediate field of this extension. Let r : Gal(L/K) ! Gal(M/K) denote the
restriction homomorphism � 7! �|M. Let m be a non-zero ideal of OK divisible by
all of the non-zero prime ideals of OK which are ramified in OL. Then

r �
⇥L/K

·

⇤
m
=
⇥M/K

·

⇤
m
.

Remark 3.22. The map r is well defined because the extension M/K is Galois.
The map

⇥M/K
·

⇤
m

is defined because the extension M/K is abelian (by the funda-
mental theorem of Galois theory) and p is unramified in OM (Proposition 2.5).

Proof. In Proposition 2.31, we saw, for all non-zero prime ideals p not dividing m,
that r(

⇥L/K
p

⇤
) =

⇥M/K
p

⇤
. These prime ideals generate I

m
K , and

⇥L/K
·

⇤
m
,
⇥M/K

·

⇤
m

and r
are group homomorphisms, so the result follows.

We return now to considering cyclotomic extensions. Let K be a number field,
let ⇣ be a primitive m-th root of unity, and let m be a non-zero ideal of OK that is
divisible by mOK. In Proposition 3.16, we showed, for all non-zero prime ideals p
of OK not dividing m, that N(p) is coprime to m and

◆(
⇥K(⇣)/K

p

⇤
) = N(p) +mZ. (3.3.1)

Let ⇡ : Z ! Z/mZ be the quotient ring homomorphism. As the ideal norm N
is multiplicative on ideals, so is ⇡ �N . As ⇡ �N maps the prime ideals in I

m
K into

the group (Z/mZ)⇥ and ⇡ � N is multiplicative, ⇡ � N actually maps all ideals in
I
m
K into (Z/mZ)⇥. Hence, there is a unique group homomorphism

N : Im
K ! (Z/mZ)⇥

which agrees with ⇡ �N on all ideals in I
m
K . We will refer to N as the reduced ideal

norm. Using the uniqueness properties defining
⇥K(⇣)/K

·

⇤
m

and N , and the fact that
◆ is a group homomorphism, (3.3.1) becomes

◆ �
⇥K(⇣)/K

·

⇤
m
= N. (3.3.2)

This equation will play an important role in Section 3.4 when we prove a part of
Artin reciprocity for cyclotomic extensions.
Example 3.23. Let us illustrate the theory above by considering the particular
case where K = Q and m = mZ. The map N is surjective. Indeed, given some
congruence class K 2 (Z/mZ)⇥, there is a positive integer a such that K = a+mZ,
and N(aZ) = a+mZ = K. Hence, the map N descends to an isomorphism

N : ImZ
Q / ker(N) ! (Z/mZ)⇥

by the first isomorphism theorem. We claim that ker(N) is equal to the set

P
mZ
K =

�
a 2 IQ : 9r, s 2 Z+. a = r

s
Z, r ⌘ s ⌘ 1 (modm)

 
.
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We begin by showing that P
mZ
K ✓ ker(N). If a 2 P

mZ
K , then there are r, s 2 Z+

such that a = r

s
Z and r ⌘ s ⌘ 1 (modm). We have that a 2 ker(N) because

N(a) = (r +mZ)(s+mZ)�1 = (1 +mZ)(1 +mZ)�1 = 1 +mZ.

We now show the other inclusion. Let a 2 ker(N). As a 2 I
mZ
Q , and Z is

a principal ideal domain, there are a, b 2 Z+, both coprime with m, such that
a = a

b
Z. As a 2 ker(N), we have 1 +mZ = N(a) = (a +mZ)(b +mZ)�1, and so

a ⌘ b (modm). Let t 2 Z+ be an inverse of b modulo m. Then at ⌘ bt ⌘ 1 (modm).
Set r = at and s = bt. As r and s are positive integers, and r

s
Z = at

bt
Z = a

b
Z = a,

and r ⌘ s ⌘ 1 (modm), we may conclude that a 2 P
mZ
K .

As K is now Q, Corollary 3.9 says that ◆ is an isomorphism. This means that

ker(
⇥Q(⇣)/Q

·

⇤
mZ) = ker(N) = P

mZ
K ,

and also that
⇥Q(⇣)/Q

·

⇤
mZ descends to an isomorphism

⇥Q(⇣)/Q
·

⇤
mZ : I

mZ
Q /PmZ

K ! Gal(Q(⇣)/Q)

which satisfies
◆ �
⇥Q(⇣)/Q

·

⇤
mZ = N.

Remark 3.24. The ray class groups arise by trying to generalise the scenario in
Example 3.23 to extensions other than Q(⇣)/Q. As we will see in the next section,
the group I

mZ
Q /PmZ

K is the narrow ray class group of Q for the modulus m.

3.4 Ray class groups and Artin reciprocity
We begin this section by motivating the study of ray class groups (in a similar way
to Section 21.2 of Sutherland [30]). There is a special relationship between the
group (Z/mZ)⇥ and the field Q. Building on what we saw in the earlier sections of
this chapter, we can say the following (where ⇣m is a primitive m-th root of unity):

• Existence: For each integer m, the field Q(⇣m) is an abelian extension of Q,
whose ramified primes are those which divide m, and for which

Gal(Q(⇣m)/Q) ⇠= (Z/mZ)⇥.

• Completeness: If K/Q is an abelian extension, then K is contained in a
field Q(⇣m). This is the well-known Kronecker–Weber theorem. We will not
use this result in our proof of Chebotarev’s density theorem.

• Reciprocity: If Q ✓ K ✓ Q(⇣m), then Gal(K/Q) is isomorphic to a quotient
of (Z/mZ)⇥. Although this particular case of reciprocity may be deduced from
the fundamental theorem of Galois theory (Q(⇣m)/Q is abelian); in general,
reciprocity is actually a statement about the Artin map (see Remark 3.37).

In the language of class field theory, we say that mZ is a modulus of Q, the group
(Z/mZ)⇥ is the ray class group of Q for the modulus mZ, and Q(⇣m) is the ray
class field of Q of modulus mZ. A central focus of global class field theory is the
generalisation of the statements above to number fields other than Q, and in the
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course of our proof of the cyclotomic case of Chebotarev’s density theorem we will
see part of this generalisation. In this section, we will define the notions of a modulus
and a ray class group for an arbitrary number field, generalising the corresponding
formulation for Q and mZ that we saw in Example 3.23. Our treatment is inspired
by Section 21.3 of Sutherland [30], although our simpler (equivalent) definition of
the ray class group is closer to the definitions given by Weber, Takagi and Hasse in
the terminology of the 1920s [12, p. 38]. We will also explain what Artin reciprocity
is, and prove a part of Artin reciprocity for cyclotomic extensions.

The construction of the ray class group is similar to the construction of the
well-known ideal class group of a number field, the latter first encountered in many
undergraduate introductory algebraic number theory courses as a means to measure
the degree to which the ring of integers of an algebraic number field fails to be a
principal ideal domain.
Definition/Proposition 3.25 ([21, VI, §1]). Let K be a number field. Let IK
be the multiplicative group of non-zero fractional ideals of OK. Let PK ✓ IK
be the (normal) subgroup of principal fractional ideals. Then the quotient group
ClK = IK/PK is called the ideal class group of K. It is a finite group, whose order
hK is called the class number of K.

Remark 3.26. By embedding, we mean an injective ring homomorphism. Recall
that a number field K has exactly n = [K : Q] embeddings in C. If � is such an
embedding, then so is its complex conjugate �. Hence n = r + 2s where r is the
number of real embeddings of K (i.e. embeddings of K in C whose image is contained
in R) and 2s is the number of complex embeddings of K (i.e. embeddings of K in C
which are not real embeddings).
Definition 3.27 (Modulus). Let K be a number field. A modulus (or cycle) m
of K consists of a non-zero ideal m0 of OK, and a subset m1 of the real embeddings
of K. We write the modulus m as a formal product m = m0 ·m1.
Definition/Proposition 3.28 (Ray class group). Let K be a number field, and
let m = m0 ·m1 be a modulus of K. Define the following groups:

• I
m
K is the subgroup of IK generated by the non-zero ideals coprime to m0.

• O
m
K = {↵ 2 OK\{0} : ↵ ⌘ 1 (modm0), and �(↵) > 0 for all � 2 m1} ✓ K⇥.

• Km is the subgroup of K⇥ generated by the set Om
K.

• P
m
K = {a 2 I

m
K : a = ↵OK for some ↵ 2 Km

} P I
m
K .

The ray class group of K for the modulus m is the quotient group

ClmK = I
m
K/P

m
K .

Proof. The set P
m
K is a subgroup of Im

K because Km is a group, and a product of
principal fractional ideals is the principal fractional ideal generated by the product
of the generators. As I

m
K is abelian, Pm

K is trivially a normal subgroup.

Remark 3.29. In the previous section, the group I
m
K was defined for non-zero

ideals m of OK. The new definition is only dependent on the ideal part of the
modulus, so there should be no ambiguity as to what we mean by I

m
K , regardless of

whether m is an ideal or a modulus.
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Remark 3.30. We say that a subset S of a group G is multiplicative if 1G 2 S
and S is closed under multiplication. It is easy to show that if S is a multiplicative
subset of an abelian group G, then the subgroup of G generated by S is given by

hSi = {g 2 G : g = s�1s0 for some s, s0 2 S}.

In the above proposition, the set of non-zero ideals coprime to m0 is a multiplic-
ative subset of IK (by their prime ideal factorisations), and the set O

m
K is also a

multiplicative subset of K⇥. As IK and K⇥ are abelian groups, it follows that:

I
m
K = {a 2 IK : a = bc�1 for some b, c P OK coprime to m0},

Km = {↵ 2 K⇥ : ↵ = ���1 for some �, � 2 O
m
K}.

Remark 3.31. The notation for the various sets and groups introduced in Defin-
ition/Proposition 3.28 varies between authors, especially with regards to the sub-
scripts and superscripts. Our notation is inspired by Definition 21.2 of Suther-
land [30]. There are two common alternate (equivalent) definitions for the subgroup
Km of K⇥ (see §1 of Chapter VI in Lang [21] and Definition 21.2 of Sutherland [30]).

Remark 3.32. The elements of ClK are called ideal classes ; similarly, we will refer
to the elements of ClmK as ray classes modulo m.

Remark 3.33. We will denote the set of all real embeddings of a number field K
by 1. If m0 is a non-zero ideal of OK, then Clm0·1

K is called the narrow ray class
group of K for the modulus m0 (technically, the modulus is m0 · 1). In the end,
our proof of Chebotarev’s density theorem will only need narrow ray class groups.
Example 3.34. Let m be the modulus OK · ; of the number field K (i.e. m0 = OK
and m1 = ;). Then ClmK is just the (ordinary) ideal class group ClK. If instead we
take m = OK ·1, we get the narrow class group of K.
Example 3.35. Let m = m0 · 1 be a modulus of Q, where m0 is an ideal of
OQ = Z. Here, the inclusion map ◆ : Q ! R is the only real embedding of Q, and
so 1 = {◆}. As every non-zero ideal of Z has a unique positive generator, there is
a positive integer m such that m0 = mZ, and so

I
m
Q =

�
a 2 IQ : 9c, d 2 Z+. a = c

d
Z, gcd(c,m) = gcd(d,m) = 1

 
,

P
m
Q =

�
a 2 IQ : 9r, s 2 Z+. a = r

s
Z, r ⌘ s ⌘ 1 (modm)

 
.

In Example 3.23, we constructed an isomorphism N : ClmQ ! (Z/mZ)⇥.
Suppose now that a 2 I

m
Q . We may write a = c

d
Z for some c, d 2 Z+ which are

both coprime with m. The ray class of a modulo m is then given by

aPm
Q =

�
b 2 IQ : 9u, v 2 Z+. b = u

v
Z, u ⌘ c (modm), v ⌘ d (modm)

 
.

Indeed, one inclusion follows by setting u = cr and v = ds, and the other follows
by setting r = uc0 and s = vd0 where c0 and d0 are positive integer inverses modulo
m of c and d respectively.
Proposition 3.36. The ray class group ClmK is finite, and the (ordinary) ideal class
group ClK is a quotient group of ClmK. The order of ClmK is denoted hm

K.
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Proof. See Theorem 1 of Chapter VI in Lang [21] (or Corollary 21.9 of Sutherland
[30], or Exercise 10 of Chapter 6 in Marcus [28]).

We now have all that we need to state Artin reciprocity. Artin reciprocity says,
for a suitable choice1 of the modulus m of K, that the Artin map

⇥L/K
·

⇤
m

is surjective
and that Pm

K ✓ ker(
⇥L/K

·

⇤
m
). From the first isomorphism theorem, it follows that the

Galois group Gal(L/K) is isomorphic to a quotient of the ray class group ClmK.
Remark 3.37. For our proof of Chebotarev’s density theorem, we only need the

special case of Artin reciprocity where K ✓ L ✓ K(⇣) for a primitive m-th root of
unity ⇣, and m = m0 · 1 where mOK divides m0. For this special case, we prove
in the following theorem that P

m
K ✓ ker

�⇥L/K
·

⇤
m

�
, and we will return later to prove

that
⇥L/K

·

⇤
m

is surjective (Proposition 4.24).
Theorem 3.38. Let K ✓ L ✓ K(⇣) be a tower of number fields, where ⇣ 2 C is
a primitive m-th root of unity. Let m = m0 · 1 be a modulus of K, where mOK
divides m0. Then

P
m
K ✓ ker

�⇥L/K
·

⇤
m

�
.

Proof. Let r : Gal(K(⇣)/K) ! Gal(L/K) be the map from Proposition 3.21, and let
◆ : Gal(K(⇣)/K) ,! (Z/mZ)⇥ be the map from Proposition 3.4. In Proposition 3.21,
we showed that that

⇥L/K
·

⇤
m
= r �

⇥K(⇣)/K
·

⇤
m
, so

ker
�⇥K(⇣)/K

·

⇤
m

�
✓ ker

�⇥L/K
·

⇤
m

�
.

As ◆ is an embedding, we also have

ker
�⇥K(⇣)/K

·

⇤
m

�
= ker

�
◆ �
⇥K(⇣)/K

·

⇤
m

�
.

Hence, it suffices to show that P
m
K ✓ ker

�
◆ �
⇥K(⇣)/K

·

⇤
m

�
.

Expanding the definitions of Pm
K , Km and O

m
K, we see that P

m
K is generated by

S =
�
a 2 IK : 9↵ 2 OK. a = ↵OK, ↵ ⌘ 1 (modm0), �(↵) > 0 for all � 2 1

 
.

So, it suffices in turn to show that S ✓ ker
�
◆ �
⇥K(⇣)/K

·

⇤
m

�
. By Equation (3.3.2), this

is equivalent to showing that N(a) ⌘ 1 (modm) for all a 2 S.
Let a 2 S. Then a = ↵OK for some ↵ 2 OK for which ↵ ⌘ 1 (modm0) and

�(↵) > 0 for all � 2 1. As ↵OK is a principal ideal, we have N(↵OK) =
��NK

Q (↵)
��.

Let �1, . . . , �r be the real embeddings of K, and ⌧1, ⌧1, . . . , ⌧s, ⌧s be the complex
embeddings of K. Then we have

NK
Q (↵) = �1(↵) · · · �r(↵)⌧1(↵)⌧1(↵) · · · ⌧s(↵)⌧s(↵)

= �1(↵) · · · �r(↵)|⌧1(↵)|
2
· · · |⌧s(↵)|

2.

As 1 =
�
�i
 r
i=1

, we have �k(↵) > 0 for all k 2
�
1, . . . , r

 
, and so NK

Q (↵) > 0.
Hence N(↵OK) = NK

Q (↵). It remains to show that NK
Q (↵) ⌘ 1 (modm).

1The minimal such choice is known as the conductor of the extension L/K.
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As ↵ ⌘ 1 (modm0) and mOK divides m0, we have ↵ � 1 2 m0 ✓ mOK. Thus
there is a � 2 OK such that ↵ = 1 +m�. It follows that

NK
Q (↵) =

Y

� : K,!C

�(↵) =
Y

� : K,!C

�
1 +m�(�)

�
= 1 +m�

for some algebraic integer �. As � =
�
NK

Q (↵)�1
�
/m 2 Q, and the algebraic integers

of Q are just integers, actually � 2 Z. Hence NK
Q (↵) ⌘ 1 (modm).

Corollary 3.39. Assuming the same notation as Theorem 3.38, there is a unique
map

⇥L/K
·

⇤
m
: ClmK = I

m
K/P

m
K ! Gal(L/K) such that


L/K
aPm

K

�

m

=


L/K
a

�

m

8a 2 I
m
K ;

and, additionally,
⇥L/K

·

⇤
m

is a group homomorphism.

Proof. This follows from the universal property of quotient morphisms.
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Chapter 4

Weber L-functions and the cyclotomic case

Heinrich Martin Weber (1842–1913) was a pioneer of class field theory. In 1886,
Weber proved Kronecker’s conjecture that every abelian field extension of Q is a
subfield of a cyclotomic field � this result is known today as the Kronecker–Weber
theorem. Weber was the first to use the term class field (Classenkörper), for the
class field of an imaginary quadratic number field, in his book Elliptic functions
and algebraic numbers [32, p. 439], published in 1891. In 1897 and 1898, Weber
published a series of three papers titled On number groups in algebraic fields [33–35]
in which he established a more general formulation of class field theory, the ideas of
which received a thorough treatment in the fourth book, titled Class fields, of the
third volume of the second edition of his Textbook of Algebra [36, pp. 563–622]. See
Frei [11] for more on Weber’s contributions to class field theory.

In the second of his three papers [35], Weber introduced his harmonic num-
ber groups [35, p. 90] � groups of ideals of a number field which correspond to
our narrow ray class groups, and he also defined what we will call the Weber L-
functions [35, p. 86] � a generalisation of the Dirichlet L-functions which replaces
the group (Z/mZ)⇥ with an ideal group (such as a narrow ray class group) which
satisfies certain properties. Just as the Dirichlet L-functions are the key analytic
tool that Dirichlet used to prove his theorem on prime numbers in arithmetic pro-
gression, the Weber L-functions are the key analytic tool that we will use to prove
Chebotarev’s density theorem for cyclotomic extensions of number fields.

Although Chebotarev did not use Weber’s number groups and class fields in his
proof � instead he preferred to work with his own notion of admissible complexes,
he was aware of Weber’s work and its connection to his own. Indeed, in his Russian
paper, Chebotarev writes [37, p. 208]:

In §III, I generalize Dirichlet’s progression theorem. Namely, I prove
the existence, in any field, of infinitely many prime ideals whose norms
lie in given admissible complexes. Similar generalizations were made
by other authors. So, Weber in his article: “Über Zahlgruppen etc.”,
(Math. Ann., Bd. 49) proves an even more general theorem, but does
not express it very clearly (namely, the concept corresponding to my
admissible complexes is vague) and, moreover, he assumes the existence
of a class field (Klassenkörper), which I avoid by narrowing the scope of
the result somewhat and introducing the concept of complexes admissible
in a narrow and broad sense.1

1Many thanks go to my friend Andrew Kaploun for helping me with this translation.
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Interestingly, a large portion of the introduction to Chebotarev’s Russian article
did not make it into its 1926 German adaptation [31], including this particular
paragraph, and another in which Chebotarev mentions B.N. Delaunay’s proof of
the Kronecker–Weber theorem as his inspiration for a result in §V of his paper
(the part of his paper where he presents what we referred to in our introduction as
his field “crossing” argument). Stevenhagen and Lenstra, in their 1996 article [29,
p. 34], appear to contradict Chebotarev’s own personal account when they say:

“In fact, Chebotarëv was at the time not yet familiar with class field
theory; he proved his theorem essentially with his bare hands.”

It is unclear how Stevenhagen and Lenstra reached this conclusion, although one
might guess that they only read the German adaptation of Chebotarev’s paper.

Armed with our knowledge about ray class groups and Artin reciprocity for
cyclotomic extensions from the previous chapter, in this chapter, we return to prove
Chebotarev’s density theorem for cyclotomic extensions. Given a tower of number
fields K ✓ L ✓ K(⇣) where ⇣ is a primitive m-th root of unity, and an element
⌧ 2 G where G = Gal(L/K), we would like to show that the Dirichlet density

�(P⌧ ) = lim
�!1+

P
p2P⌧

N(p)��

P
p2P (K) N(p)��

(4.0.1)

exists and equals 1/|G|, where

P⌧ =
�
p 2 P (K) : p is unramified in OL,

⇥L/K
p

⇤
= ⌧
 
.

The key idea, which, in some form, goes back to Dirichlet’s proof of his theorem on
prime numbers in arithmetic progressions [25], is to use the second orthogonality
relation (Proposition A.11) to rewrite the numerator of the limit in (4.0.1) as

X

p2P⌧

N(p)�� =
1

|G|

X

�2 bG

�(⌧�1)
X

p

�(
⇥L/K

p

⇤
)

N(p)�
(4.0.2)

where the sums on the right-hand side of (4.0.2) are taken over all non-zero prime
ideals p of OK which are unramified in OL. It turns out that a sum of the form

X

p

�(
⇥L/K

p

⇤
)

N(p)s
(4.0.3)

differs, by a bounded function of s, from a function of s which, in some sense, may
be thought of as the logarithm of a Weber L-function. The Weber L-functions and
their logarithms have nice analytic properties � most of this chapter will be spent
stating and proving these properties; (4.0.2) will allow us to use these properties to
understand the behaviour of the numerator of the limit in (4.0.1) as � ! 1+.

Remark 4.1. Throughout the rest of this chapter, it is assumed that the reader is
familiar with the character theory of finite abelian groups, and also with the theory
of infinite products. For the reader’s convenience, we provide a thorough introduc-
tion to these topics, proving all needed results, in Appendix A and Appendix B
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respectively. We also remind the reader of the properties of generalised commut-
ativity and generalised associativity enjoyed by absolutely convergent infinite sums
and products, which we discussed in Remark 2.36.

Remark 4.2. Throughout this chapter, we will use the notation

H(�) = {s 2 Z : Re(s) > �}

for the open half-plane in C to the right of the line Re(s) = �, where � 2 R.

4.1 Weber L-functions
The focus of this section is to introduce the Weber L-functions. We begin, however,
with a brief overview of the analogous treatment of the simpler Dirichlet L-functions,
to provide a point of reference for when we consider the more general case.

The Dirichlet L-function L(s,�), where s is a complex variable and � is a char-
acter of the group (Z/mZ)⇥ for some positive integer m, is defined by the series

L(s,�) =
X

gcd(n,m)=1

�(n+mZ)
ns

,

taken over all positive integers n which are coprime to m. The series converges
absolutely for all s 2 H(1) by comparison with the p-series

P
1

n=1 n
��. One uses

the complete multiplicativity of the function n 7! �(n+mZ)n�s to show that L(s,�)
is also given by the Euler product

L(s,�) =
Y

p -m

✓
1�

�(p+mZ)
ps

◆�1

,

taken over all prime numbers p not dividing m. As the sum
P

p -m �(p+mZ)p�s con-
verges absolutely for all s 2 H(1) (also by comparison with the p-series

P
1

n=1 n
��),

we may use Corollary B.11 to deduce that the Euler product also converges abso-
lutely for all s 2 H(1).

For the Dirichlet L-functions, we were able to prove the absolute convergence of
the series and Euler product independently. For the Weber L-functions, it is easier
to show that their Euler product formula converges absolutely on H(1), because
the Euler product is taken over prime ideals rather than arbitrary ideals and so we
have the theory of splitting of prime ideals in extensions at our disposal. In our
appendix on infinite products (Appendix B), we prove a result about generalised
Euler products and their corresponding series (Proposition B.14), which essentially
says that if either converges absolutely, then both converge absolutely and to the
same value. We will use this result to deduce that the series formula for a Weber
L-function is also absolutely convergent on H(1), and that it converges here to the
same value as its Euler product.

Remark 4.3. Let K be a number field, and let m = m0 ·m1 be a modulus of K.
Recall that Im

K denotes the set of non-zero fractional ideals of OK which are coprime
to m0, and that ClmK = I

m
K/P

m
K denotes the ray class group of K for the modulus m

(Definition/Proposition 3.28). When it is clear from context which ray class group
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is being discussed, rather than explicitly writing aPm
K for the ray class of an element

a of Im
K , we will instead write ã.

Definition/Proposition 4.4 (Weber L-function). Let K be a number field, let
m = m0 ·m1 be a modulus of K, and let � be a character of ClmK. The Weber
L-function Lm

K(s,�) is defined by

Lm
K(s,�) =

Y

p -m0

✓
1�

�(p̃)

N(p)s

◆�1

=
X

gcd(a,m0)=1

�(ã)

N(a)s
,

where the infinite product is taken over all non-zero prime ideals p of OK which do
not divide m0, the series is taken over all non-zero ideals a of OK which are coprime
with m0, and the series and infinite product are both absolutely convergent and
equal for all s 2 H(1).

Proof. Let s 2 H(1) and let � = Re(s). For all non-zero prime ideals p of OK,
����
�(p̃)

N(p)s

���� =
1

N(p)�
< 1

because N(p) = |OK/p| > 1. This means that the factors in the infinite product
defining Lm

K(s,�) are non-zero, and so this infinite product fits within our restricted
definition of infinite products (Definition B.1).

In Proposition 2.40, we showed that the series
P

p -m0
N(p)�� converges. Hence,

the series
P

p -m0
�(p̃)N(p)�s is absolutely convergent. By Corollary B.11, the infin-

ite product
Q

p -m0
(1 � �(p̃)N(p)�s) is thus also absolutely convergent. Hence, the

infinite product defining Lm
K(s,�) is absolutely convergent (Proposition B.13).

It remains to show that the series defining Lm
K(s,�) converges absolutely, and

that it equals the infinite product defining Lm
K(s,�). In the paragraph preced-

ing Proposition B.14, we introduced the notation I for the set of non-negative in-
teger sequences i = (ik)1k=1 with only finitely many of the ik non-zero. Let p1, p2, . . .
be an enumeration of the countably many non-zero prime ideals of OK which do
not divide m0. Define the function f : Im

K ! C⇥ by f(a) = �(ã)N(a)�s. Apply-
ing Proposition B.14 to the sequence of complex numbers

�
f(p1), f(p2), . . .

�
, all of

which have moduli less than 1, we find that

Y

p -m0

✓
1�

�(p̃)

N(p)s

◆�1

=
X

i2I

f(p1)
i1f(p2)

i2 · · · ,

where the series on the right converges absolutely and equals the product on the
left because the product on the left converges absolutely. As f(ab) = f(a)f(b) for
all a, b 2 I

m
K , that is, f is completely multiplicative, we have

X

i2I

f(p1)
i1f(p2)

i2 · · · =
X

i2I

f
�
pi11 p

i2
2 · · ·

�
=

X

gcd(a,m0)=1

f(a) =
X

gcd(a,m0)=1

�(ã)

N(a)s
,

where the reindexing in the second equality uses the uniqueness of the prime ideal
factorisations of the non-zero ideals of OK.
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Definition 4.5. Let K be a number field, and let c be a non-zero ideal of K. The
Dedekind zeta function of K with respect to c, denoted ⇣cK, is defined by

⇣cK(s) =
X

gcd(a,c)=1

1

N(a)s
=
Y

p - c

✓
1�

1

N(p)s

◆�1

,

where the sum and product both converge absolutely and are equal, for all s 2 H(1).
Remark 4.6. Evidently, if m is a modulus of K of the form m = c · m1, then

⇣cK(s) = Lm
K(s,�1). Hence, all properties of the Weber L-function Lm

K(s,�1) transfer
to properties of the Dedekind zeta function ⇣cK.

4.2 Complex analysis review
As complex analysis will play an important role throughout the rest of the chapter,
it is worth recalling the basic definitions and results that we will use. Our summary
is similar to the one provided in Section 16.3.1 of Sutherland [30]. Let f , g and h
be complex functions defined on an open subset of C.

• f is differentiable at z0 2 C if limz!z0

f(z)�f(z0)
z�z0

exists.
• f is holomorphic at z0 2 C if it is differentiable on an open ball centred at z0.
• f is analytic at z0 2 C if there is an open ball centred at z0 on which f has a

(convergent) power series expansion f(z) =
P

1

n=0 an(z � z0)n.
• Theorem. f is holomorphic at z0 2 C if and only if it is analytic at z0.

See Theorem 5.1 in Chapter II of Lang [22, p. 72] for the “if” direction, and
Theorem 7.2 in Chapter III of Lang [22, p. 127] for the “only if” direction.

• Theorem 4.7. If a sequence of complex functions (fn)1n=1, which are analytic
on an open subset U of C, converges uniformly to f on every compact subset
of U , then f is analytic on U and the sequence of derivatives (f 0

n
)1
n=1 converges

uniformly to f 0 on every compact subset of U . See Theorems 1.1 and 1.2 in
Chapter V of Lang [22, pp. 156–157].

• Theorem 4.8 (Identity theorem). If f and g are analytic on an connected
open set U of C, and they are equal on some subset of U which has a limit
point, then f and g are equal on all of U . See Theorem 1.2 in Chapter III of
Lang [22, p. 90].

• Theorem 4.9. Suppose that f is analytic on a non-empty connected open
set U . Let a 2 U , and choose R > 0 so that B(a,R) ✓ U . Then

�����f(z)�
n�1X

k=0

f (k)(a)

k!
(z � a)k

����� 6
M |z � a|n

Rn�1(R� |z � a|)

for all n > 1 and all z 2 B(a,R), where

M = max
|z�a|=R

|f(z)|.

Combine Theorem 8 (Taylor’s theorem) of Chapter 4 in Alfhors [1, p. 125]
with the upper bound on the remainder term given on the next page.
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• If f is holomorphic on a non-empty open set U of C, and g is holomorphic on
a connected open set C of C containing U , and g is equal to f on U , then g
is the (unique) analytic continuation of f to C.

• The principal branch of the complex logarithm is the function Log : C\{0} !

C given by
Log(z) = ln|z|+ iArg(z) 8z 2 C\{0},

where ln : (0,1) ! R is the real logarithm, and Arg(z) is the principal argu-
ment of z, that is, the argument of z in the interval (�⇡, ⇡].

• Theorem 4.10. The function Log is holomorphic on C\(�1, 0], where its
derivative given by

Log0(z) =
1

z
8z 2 C\(�1, 0].

Also, Log is discontinuous on (�1, 0]. See Chapter 3, §6 of Lang [22].
• Theorem 4.11. The function z 7! �Log(1� z) is given by the convergent

power series

�Log(1� z) =
1X

n=1

zn

n
,

on the open ball centred at 0 of radius 1. Indeed, the left and right-hand sides
are both primitives of 1/(1 � z) =

P
1

n=0 z
n on this ball, and they take the

same value 0 at z = 0.
• B�(z0, r) = {z 2 C : 0 < |z � z0| < r} is the punctured ball centred at z0 of

radius r.
• If f is holomorphic on a punctured ball centred at z0 2 C, and |f(z)| ! 1

as z ! z0, then z0 is a pole of f . By definition, the poles of f are isolated.
• f is meromorphic at z0 2 C if it is holomorphic at z0 or z0 is a pole of f .
• Theorem. If f is meromorphic at z0 2 C, then there is a punctured ball

centred at z0 on which f has a (convergent) Laurent series expansion

f(z) =
1X

n=�n0

an(z � z0)
n.

See Theorem 2.1 in Chapter V of Lang [22, p. 162].
• The order ordz0(f) of a non-zero function f at a point z0 2 C where f is

meromorphic, is the least index n of all of the non-zero coefficients an in the
Laurent series expansion f(z) =

P
1

n=�n0
an(z � z0)n of f at z0. Thus z0 is

a pole of f if and only if ordz0(f) < 0, and z0 is a zero of f if and only if
ordz0(f) > 0.

• If ordz0(f) = 1, then z0 is a simple zero of f . If ordz0(f) = �1, then z0 is a
simple pole of f .

• The residue resz0(f) of a function f at a point z0 2 C where f is meromorphic,
is the coefficient a�1 in the Laurent series expansion f(z) =

P
1

n=�n0
an(z�z0)n

of f at z0.
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• Theorem 4.12. If z0 2 C is a simple pole of f , then

resz0(f) = lim
z!z0

(z � z0)f(z).

This follows by considering the Laurent series expansion of f at z0.

4.3 Complex analytic properties of the Weber L-functions
The next step is to deduce the complex analytic properties of the Weber L-functions.
In particular, we will show that Lm

K(s,�) has an analytic continuation to the half-
plane H

�
1 �

1
[K:Q]

�
when � 6= �1, and that Lm

K(s,�1) (equivalently ⇣cK(s)) has a
meromorphic continuation to the half-plane H

�
1� 1

[K:Q]

�
, which is analytic except

for a simple pole at s = 1.
Remark 4.13. Let K be a number field, let m be a modulus of K, let � 2 dClmK,

and let s 2 H(1). For each positive integer n and each ray class K 2 ClmK, let

jn(K) =
���a P OK : a 2 K, N(a) = n

 ��.

Applying generalised associativity (Theorem 2.39) to the series defining Lm
K(s,�),

we find that

Lm
K(s,�) =

1X

n=1

P
K2ClmK

�(K)jn(K)

ns
, (4.3.1)

where the inner series is actually a finite sum (Proposition 3.36) and the outer series
converges absolutely.

A Dirichlet series is a series of the form
1X

n=1

an
ns

,

where (an)1n=1 is a sequence of complex numbers. General series of this form were
first studied by Dirichlet, who was interested in their application to number the-
ory [16, p. 1]. In §101 of Dedekind’s notes [10, pp. 254–258] on Dirichlet’s lectures
on number theory at Göttingen (1856–1857), we see that Dirichlet had proved that
if the partial sums

P
N

n=1 an are bounded, then the series
P

1

n=1 ann
�s is a convergent

continuous function of s on the interval (0,1). In supplement IX, written by Dede-
kind and added to later editions of the lecture notes [10, pp. 376–386], Dedekind
proved several more important results about these series, which he referred to as
“Dirichlet’schen Reihen” (Dirichlet’s series), but he still only considered real values
of the variable s. The first results about general Dirichlet series with s a complex
variable are due to Jensen and Cahen. Jensen [18, p. 70] showed that if such a series
converges at s0 = �0 + it0 2 C then it converges on all of H(�0). Cahen [8, p. 83]
showed that if the partial sums of such a series are bounded at s0, then the series is
uniformly convergent on all compact subsets of H(�0), and thus it converges to an
analytic function on H(�0). For a thorough introduction to Dirichlet series, consult
Chapter 11 of Apostol [2].

We will use the following proposition, a stronger version of Cahen’s result, to
construct our meromorphic continuations of the Weber L-functions.

53



Proposition 4.14. Consider the Dirichlet series D(s) =
P

1

n=1 ann
�s. Suppose

that at some point s0 = �0 + it0 2 C, the partial sums of D(s0) satisfy

NX

n=1

an
ns0

= ⇢N r +O(Nu) as N ! 1,

for some ⇢ 2 C and some u, r 2 R with u 6 r. Then D(s) converges to a holo-
morphic function of s on the half-plane H(�0 + r), and it has a meromorphic con-
tinuation to the half-plane H(�0 + u) which is holomorphic everywhere except, if
⇢ 6= 0, for a simple pole of residue ⇢r at s = s0 + r.

Remark 4.15. Let (an)1n=1 and (bn)1n=1 be sequences of complex numbers, and
let (cn)1n=1 be a sequence of positive real numbers. By

an = bn +O(cn) as n ! 1,

we mean that there is an integer n0 > 1 and a real number C > 0 such that

|an � bn| 6 C · cn 8n > n0.

We will use the following lemma in our proof of Proposition 4.14.
Lemma 4.16. Let f be a piecewise-continuous complex-valued function defined
on [N,1) for some N > 1. Suppose that there is a u 2 R and a C > 0 such
that |f(x)| 6 Cxu for all x > N . Let

F (s) =

Z
1

N

f(x)x�s�1dx.

Then
(i) The integral F (s) is absolutely convergent for all s 2 H(u).
(ii) The function F is holomorphic on H(u), with derivative given by the absolutely

convergent integral

G(s) = �

Z
1

N

ln(x)f(x)x�s�1dx.

Proof. Let s = � + it 2 H(u). For all x > max(e,N), we have ln(x) > 1, and so
��f(x)x�s�1

�� 6 |ln(x)f(x)x�s�1
| 6 C ln(x)xu���1.

Integrating by parts, and then noting that � � u > 0 and that ln(M) grows more
slowly than any positive power of M , we see that

R
1

1 ln(x)xu���1dx = (� � u)�2.
Hence the integrals F (s) and G(s) both converge absolutely by comparison.
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Let s0 = �0+ it0 2 H(u). We will show that F 0(s0) = G(s0). Let R = 1
2(�0�u),

so that 0 < R < �0 � u, and thus B(s0, R) ✓ H(u). Let s 2 B(s0, R). Then
����
F (s)� F (s0)

s� s0
�G(s0)

���� =
����
Z

1

N

f(x)x�s0�1

✓
xs0�s

� 1

s� s0
+ ln(x)

◆
dx

����

6 C

Z
1

N

xu��0�1

����
xs0�s

� 1

s� s0
+ ln(x)

����dx (4.3.2)

For all x > 1, the function z 7! xs0�z is analytic on C, and s 2 B(s0, R) ✓ C, so

��xs0�s
� 1 + ln(x)(s� s0)

�� 6 M |s� s0|2

R(R� |s� s0|)

by Theorem 4.9 (taking n = 2), where

M = max
|z�s0|=R

|xs0�z
| = max

|z�s0|=R

x�0�Re(z) = xR.

Hence, continuing from (4.3.2), we have
����
F (s)� F (s0)

s� s0
�G(s0)

���� 6 C

Z
1

N

xu��0�1 xR
|s� s0|

R(R� |s� s0|)
dx

=
C|s� s0|NR+u��0

R(R� |s� s0|)(�0 �R� u)
, (4.3.3)

where we used the fact that R+ u� �0 < 0 to compute the improper integral. The
right-hand side of (4.3.3) goes to zero as s ! s0, and thus, by the pinching theorem,
so does the left-hand side. This means that F 0(s0) = G(s0).

Proof of Proposition 4.14. It suffices to prove the result only in the case where
s0 = 0. Suppose that we have already shown that this special case of the result
holds. The partial sums of the Dirichlet series

E(s) =
1X

n=1

ann�s0

ns

at s = 0 are the same as the partial sums of D(s) at s = s0. As
P

N

n=1 ann
�s0 =

⇢N r + O(Nu) as N ! 1, by our assumption, E(s) converges to a holomorphic
function of s on the half-plane H(r), and it has a meromorphic extension to the
half-plane H(u), which is holomorphic everywhere except, if ⇢ 6= 0, for a simple pole
of residue ⇢ at s = r. As the translations of H(r), H(u) and r by s0 are, respectively,
H(�0 + r), H(�0 + u) and s0 + r, and as D(s) = E(s� s0), we may conclude that
D(s) has the desired properties. So, without loss of generality, assume that s0 = 0.

Let DN(s) =
P

N

n=1 ann
�s and let AN = DN(0) =

P
N

n=1 an for all integers
N > 1. Also let A0 = 0. Since AN = ⇢N r + O(Nu) as N ! 1, there is a C > 0
and an integer N0 > 1 such that |AN � ⇢N r

| < CNu for all integers N > N0. We
also have AN = O(N r) as N ! 1 because r > u. Hence, by increasing C and N0

if necessary, we may also assume that |AN | 6 CN r for all N > N0.
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We begin by showing that D converges on H(r), that is, for all s 2 H(r), that
DN(s) converges as N ! 1. Let s = � + it 2 H(r). Notice that an = An � An�1

for all n > 1. Hence, for all N > 1, we have

DN(s) =
NX

n=1

an
ns

=
NX

n=1

An � An�1

ns
=

NX

n=1

An

ns
�

NX

n=1

An�1

ns

=
NX

n=1

An

ns
�

N�1X

n=0

An

(n+ 1)s
=

AN

N s
�

N�1X

n=1

An


1

(n+ 1)s
�

1

ns

�
.

As s 6= 0, for all n > 1 we have
Z

n+1

n

dx

xs+1
= �

1

s


1

(n+ 1)s
�

1

ns

�
.

It follows, for all N > 1, that

DN(s) =
AN

N s
+ s

N�1X

n=1

An

Z
n+1

n

dx

xs+1
.

Let A : [1,1) ! C be the step function defined by A(x) = Abxc. For example
A(2.8) = A2. Then A is piecewise continuous, and so for all N > 1, we have

DN(s) =
AN

N s
+ s

Z
N

1

A(x)

xs+1
dx. (4.3.4)

For all N > N0, we have
����
AN

N s

���� 6
CN r

N�
=

C

N��r
,

and the right-hand side tends to zero as N ! 1 because � � r > 0. Hence

lim
N!1

AN

N s
= 0

by the pinching theorem. We also have |A(x)| < Cxr for all real x > N0, and so
Z

1

1

����
A(x)

xs+1

����dx 6
Z

N0

1

����
A(x)

xs+1

����dx+ C

Z
1

N0

dx

x��r+1
,

where the right-hand side converges because the improper integral is a p-integral
with p = � � r + 1 which is greater than 1, and so the left-hand side converges by
comparison. Hence, the integral

R
1

1 A(x)x�(s+1)dx converges absolutely. Combin-
ing all of this with (4.3.4), we conclude that DN(s) converges as N ! 1, and that
D(s) is given by the absolutely convergent integral

D(s) = lim
N!1

DN(s) = s

Z
1

1

A(x)

xs+1
dx. (4.3.5)
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For all s 2 H(r), we have

D(s) =

✓
DN0(s)�

AN0

N s

0

◆
+ s

Z
1

N0

A(x)

xs+1
dx

= DN0(s)�
AN0

N s

0

+ s

Z
1

N0

A(x)� ⇢xr

xs+1
dx+ ⇢s

Z
1

N0

xr�s�1dx

= DN0(s)�
AN0

N s

0

+ s

Z
1

N0

A(x)� ⇢xr

xs+1
dx+ ⇢s

N s�r

0

s� r
. (4.3.6)

Now DN0(s) and AN0N0
�s are holomorphic functions of s on C. As A(x)�⇢xr 6 Cxu

for all x > N0, Lemma 4.16 implies that
R

1

N0
(A(x)� ⇢xr)x�s�1dx is a holomorphic

function of s on H(u). Finally, ⇢s(s� r)�1N s�r

0 is a meromorphic function of s
on C which is holomorphic everywhere, except, if ⇢ 6= 0, for a simple pole of residue
⇢r at s = r. Overall, the right-hand side of (4.3.6), seen as a function of s, defines
a meromorphic continuation of D to H(u) which is analytic everywhere, except,
when ⇢ 6= 0, for a simple pole of residue ⇢r at s = r.

To apply Proposition 4.14 to the series in (4.3.1), we need the following result.
Theorem 4.17. Assume the same notation as in Remark 4.13. Then there is a
real constant ⇢mK > 0, such that for each class K 2 ClmK,

NX

n=1

jn(K) = ⇢mKN +O
�
N1� 1

[K:Q]
�

as N ! 1.

Proof. The standard proof of this result is quite technical; and it depends on results
about lattices in Rn, their fundamental domains, and subsets of Rn which are k-
Lipschitz parameterisable, as well as the group of units of a number field, all of
which are orthogonal to the rest of this thesis. Rather than take a large detour to
introduce these notions and prove this result, we instead refer the reader to §2 and
§3 of Chapter VI in Lang [21, p. 132].

Remark 4.18. The specific case of this theorem when m = OK · ;, that is, when
the ray classes are just the (ordinary) ideal classes, is a standard step in the proof of
the analytic class number formula. The usual proof of this special case (Theorem 39
of Marcus [28, pp.111] or Theorem 19.12 of Sutherland [30]) works mutatis mutandi
for the general case (Exercise 13 in Chapter 6 of Marcus [28, p. 126]).

Remark 4.19. One may wonder whether a large part of the proof of Chebotarev’s
density theorem is hidden in the proof of this theorem. We claim that this is not
the case, at least in the situation where K = Q and m = mZ ·1 for some positive
integer m. Extending Example 3.23, the ideal norm map restricts to a bijection
between the ideals in I

m
Q and the positive integers coprime with m, and it induces

a bijection between the ray classes of Q modulo m and the congruence classes of Z
modulo m which are coprime to m. In this case, the above theorem says that the
number of positive integers less than an upper bound N which fall into a given
congruence class modulo m is approximately ⇢N for some ⇢ > 0, and that the error
is asymptotically bounded. But this statement is obviously true, where we may take
⇢ = 1/m, and the error is always at most 1. On the other hand, the corresponding
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1� 1
[K:Q]

1
Re(s)

Im(s)

0

Figure 4.1: The series Lm
K(s,�) is absolutely convergent and an analytic function of

s on the dark grey region. This function has a meromorphic continuation to include
the light grey region, which is analytic everywhere except, in the case that � = �1,
for a simple pole at s = 1.

case of Chebotarev’s density theorem is Dirichlet’s theorem on primes in arithmetic
progression, which is a deeper result and is not trivial to prove.

Remark 4.20. The theorem implies that the ideals of OK are approximately
equidistributed across the ray classes modulo m. Indeed, for each N > 1, let

JN =
�
a P OK : a 2 I

m
K , N(a) 6 N

 
.

For each ray class K, the theorem says that

|JN \K| = ⇢mKN +O
�
N1� 1

[K:Q]
�

as N ! 1; (4.3.7)

and by summing (4.3.7) over all of the ray classes, it also implies that

|JN | = hm
K⇢

m
KN +O

�
N1� 1

[K:Q]
�

as N ! 1. (4.3.8)

The statement f(N) = ⇢N + O(N1�✏) means that there is a constant C > 0 such
that |f(N)/N � ⇢| 6 CN�✏ for all large enough N . If ✏ > 0, then CN�✏

! 0 as
N ! 1, and thus f(N)/N ! ⇢ as N ! 1 by the pinching theorem. Applying
this to (4.3.7) and (4.3.8), we can deduce that |JN \ K|/|JN | ! 1/hm

K as N ! 1

for each ray class K. In other words, the set of ideals in a given ray class K has
natural density 1/hm

K in the set of all non-zero ideals of OK.
We now have all we need to prove the main result of this section. Recall that

hm
K = |ClmK| is always finite (Proposition 3.36).

Proposition 4.21. Assume the same notation as in Remark 4.13. Then Lm
K(s,�)

is a holomorphic function of s on H(1). Also
(i) if � = �1, then this function has a meromorphic continuation to the half-

plane H
�
1� 1

[K:Q]

�
which is holomorphic except for a simple pole at s = 1 with

residue hm
K⇢

m
K; and

(ii) if � 6= �1, then this function has an analytic continuation to the half-plane
H
�
1� 1

[K:Q]

�
.

Refer to Figure 4.1.
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Proof. The N -th partial sum of Lm
K(0,�) is

NX

n=1

⇣ X

K2ClmK

�(K)jn(K)
⌘
n�0 =

X

K2ClmK

�(K)
⇣ NX

n=1

jn(K)
⌘
.

By Theorem 4.17, as N ! 1, we have

X

K2ClmK

�(K)
⇣ NX

n=1

jn(K)
⌘
=
X

K2ClmK

�(K)
⇣
⇢mKN +O

�
N1� 1

[K:Q]
�⌘

= ⇢mKN
⇣ X

K2ClmK

�(K)
⌘
+O

�
N1� 1

[K:Q]
�
.

By the first orthogonality relation (Proposition A.11), we know that

X

K2ClmK

�(K) =
X

K2ClmK

�(K)�1(K) =

(
|ClmK| = hm

K if � = �1,

0 otherwise.

Hence, as N ! 1, we have

NX

n=1

⇣ X

K2ClmK

�(K)jn(K)
⌘
=

(
hm
K⇢

m
KN +O

�
N1� 1

[K:Q]
�

if � = �1,

O
�
N1� 1

[K:Q]
�

otherwise.

The result follows from Proposition 4.14 in the case that � 6= �1, and from Propos-
ition 4.14 when � = �1 with ⇢ = hm

K⇢
m
K > 0.

4.4 Weber L-functions and the Artin map
In Definition 3.20, we defined the Artin map

⇥L/K
·

⇤
m
: Im

K ! Gal(L/K). For the spe-
cial case where L/K is cyclotomic and m = m0 ·1 for some m0 divisible by mOK, we
proved, in Corollary 3.39, that the Artin map descends to a group homomorphism

⇥L/K
·

⇤
m
: ClmK ! Gal(L/K).

In this section, for the same special case, we will simultaneously show that the
Artin map is surjective (this is the other part of Artin reciprocity that we said that
we would prove in Remark 3.37), and that the Weber L-functions Lm

K(s,� �
⇥L/K

·

⇤
m
)

are non-zero at s = 1 if � is a non-trivial character of Gal(L/K). The argument
hinges on the ability to write the Dedekind zeta function of the extension field L
as a product of Weber L-functions of the base field K, so that we may compare the
orders of the poles at s = 1 on both sides of the resulting equality. Deriving this
product formula is the focus of the next proposition.

Remark 4.22. Note that � �
⇥L/K

·

⇤
m

is a composition of group homomorphisms,
and it maps from ClmK to C⇥, so it is indeed a character of ClmK.
Proposition 4.23. Let K ✓ L ✓ K(⇣) be a tower of number fields, where ⇣ 2 C is
a primitive m-th root of unity. Let m = m0 ·1 be a modulus of K with m0 divisible
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by mOK, and let M = m0OL. Let G 6 Gal(L/K) be the image of the map
⇥L/K

·

⇤
m
,

and let n = [Gal(L/K) : G]. Then for all s 2 H
�
1� 1

[L:Q]

�
\{1}, we have

⇣ML (s) =
Y

�2 bG

Lm
K(s,� �

⇥L/K
·

⇤
m
)n. (4.4.1)

Proof. The left and right-hand sides of (4.4.1) are analytic functions of s on the
connected open set H

�
1 �

1
[L:Q]

�
\{1} by Proposition 4.21. As H(1) is a subset

of H
�
1 �

1
[L:Q]

�
\{1} which contains a limit point, it suffices by the identity the-

orem (Theorem 4.8) to show that the equality (4.4.1) holds on H(1).
Fix an s 2 H(1). If we can show that the factors of the Euler product expansions

of the left and right-hand sides of (4.4.1) are the same, then the equality will hold
by generalised commutativity and associativity (Remark 2.36). Let p be a prime
ideal of OK which does not divide m0. By Corollary 2.17, we have

pOL =
Y

P | pOL

Pe,

where the product is taken over the g prime ideals P of OL above p, and these prime
ideals have common ramification index e > 1 and common inertial degree f > 1
over p. Also, efg = [L : K] = |Gal(L/K)|. As p does not divide mOK, it is unrami-
fied in OK(⇣) (Proposition 3.12), so it is also unramified in OL (Proposition 2.5),
and thus e = 1. We also know that f is the order of the element

⇥L/K
p

⇤
in Gal(L/K)

(Corollary 2.24), and that N(P) = N(p)f for all prime ideals P of OL above p.
Finally |Gal(L/K)| = [Gal(L/K) : G] |G| = n|G|, and so g = n|G|/f . Putting this
all together, we find that

Y

P | pOL

✓
1�

1

N(P)s

◆
=

✓
1�

1

N(p)sf

◆n|G|/f

=
Y

�2 bG

✓
1�

�(
⇥L/K

p

⇤
)

N(p)s

◆n

, (4.4.2)

where the second equality follows by setting X = N(p)�s and � =
⇥L/K

p

⇤
in Propos-

ition A.8. Taking the reciprocal of both sides of (4.4.2), then taking the product of
the result over all prime ideals p of OK which do not divide m0, and finally noting
that

⇥L/K
p̃

⇤
m
=
⇥L/K

p

⇤
, we get

⇣ML (s) =
Y

p -m0

Y

P | pOL

✓
1�

1

N(P)s

◆�1

=
Y

p -m0

Y

�2 bG

✓
1�

�(
⇥L/K

p̃

⇤
m
)

N(p)s

◆�n

,

where the first equality holds by generalised associativity because the Euler product
defining ⇣ML (s) is absolutely convergent. Applying generalised associativity again to
the Euler product on the right-hand side, the result follows.

Proposition 4.24. Assume the same notation as Proposition 4.23. Then
(i) G = Gal(L/K); and
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(ii) Lm
K(1,� �

⇥L/K
·

⇤
m
) 6= 0 for all non-trivial characters � of G.

Proof. The left and right-hand sides of (4.4.1) are meromorphic functions of s on
H
�
1� 1

[L:Q]

�
. Equating the orders of these functions at s = 1, we get

ords=1

�
⇣ML (s)

�
= n

X

�2 bG

ords=1

�
Lm
K(s,� �

⇥L/K
·

⇤
m
)
�
. (4.4.3)

From Proposition 4.21 and Definition 4.5, we know that ords=1

�
⇣ML (s)

�
= �1.

Also from Proposition 4.21, the order of Lm
K(s,� �

⇥L/K
·

⇤
m
) at s = 1 is �1 if � is

the trivial character of G, and otherwise it is non-negative. Here, we have used the
fact that � is the trivial character of G if and only if ��

⇥L/K
·

⇤
m

is the trivial character
of ClmK. The “only if” direction is obvious. Conversely, suppose that � is not the
trivial character of G. Then there is a � 2 G such that �(�) 6= 1. As G is the image
of
⇥L/K

·

⇤
m
, there is a K 2 ClmK such that

⇥L/K
K

⇤
m
= �, and so �(

⇥L/K
K

⇤
m
) = �(�) 6= 1.

Hence � �
⇥L/K

·

⇤
m

is not the trivial character of ClmK.
Putting this all together, (4.4.3) becomes

�1 = n
⇣
�1 +

X

�2 bG\{�1}

ords=1

�
Lm
K(s,� �

⇥L/K
·

⇤
m
)
�⌘

.

Hence n divides �1. As n > 0, this means that n = 1, and so G = Gal(L/K). Also,

0 =
X

�2 bG\{�1}

ords=1

�
Lm
K(s,� �

⇥L/K
·

⇤
m
)
�
,

and as no term in the sum is negative, they must all be zero. Hence, for all non-
trivial characters � of G, we have Lm

K(1,� �
⇥L/K

·

⇤
m
) 6= 0.

4.5 Chebotarev’s density theorem for cyclotomic extensions
In this section, we finally prove Chebotarev’s density theorem for cyclotomic ex-
tensions. Along the way we also prove that the Dirichlet density of a set of prime
ideals is given by an alternate formula; the alternate formula is easier to work with
and will be used multiple times throughout the rest of this thesis. Both of these
results arise from an exploration of the asymptotic properties near s = 1 of the
function `mK(s,�), defined momentarily, which we think of as the logarithm of the
Weber L-function Lm

K(s,�) (although we do not claim that `mK(s,�) is the compos-
ition of any particular branch of the complex logarithm function with Lm

K(s,�)).
The function `mK(s,� �

⇥L/K
·

⇤
m
), for a suitable choice of the modulus m, is the func-

tion that, in the introduction to this chapter, we claimed differs from a series of
the form (4.0.3) by a bounded function of s � this is what we show in Proposi-
tion 4.32. Our final proof of Chebotarev’s density theorem (Theorem 4.36) uses the
clever application of the second orthogonality relation (Proposition A.11) that we
already saw in (4.0.2) to compute the Dirichlet density of interest with the analytic
properties of the functions `mK(s,� �

⇥L/K
·

⇤
m
).
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Definition/Proposition 4.25. Let K be a number field, let m = m0 · m1 be a
modulus of K, let � 2 dClmK, and let s 2 H(1). Then the series `mK(s,�) defined by

`mK(s,�) = �

X

p -m0

Log

✓
1�

�(p̃)

N(p)s

◆

is absolutely convergent, and it satisfies

Lm
K(s,�) = e`

m
K (s,�).

Proof. Recall that Lm
K(s,�) is given by the absolutely convergent product

Lm
K(s,�) =

Y

p -m0

✓
1�

�(p̃)

N(p)s

◆�1

.

By Proposition B.13, Lm
K(s,�)

�1 is given by the absolutely convergent product

Lm
K(s,�)

�1 =
Y

p -m0

✓
1�

�(p̃)

N(p)s

◆
.

As the product for Lm
K(s,�)

�1 converges, by Proposition B.7 the series �`mK(s,�)
also converges and

Lm
K(s,�)

�1 = e�`
m
K (s,�).

Actually, as the product for Lm
K(s,�)

�1 converges absolutely, by the definition of
absolute convergence of an infinite product (Definition B.9), we have absolute con-
vergence of the series �`mK(s,�), and thus also of the series `mK(s,�).

Proposition 4.26. Let K be a number field, let m = m0 · m1 be a modulus of K,
let � 2 dClmK, and let s 2 H(1). Then

`mK(s,�) =
X

p -m0

1X

k=1

1

k

✓
�(p̃)

N(p)s

◆k

.

Proof. For each prime ideal p of OK not dividing m0, the power series expansion

Log

✓
1�

�(p̃)

N(p)s

◆
= �

1X

k=1

1

k

✓
�(p̃)

N(p)s

◆k

holds because |�(p̃)N(p)�s
| < 1 (Theorem 4.11). The result follows by applying

this expansion to each term in the series defining `mK(s,�).

Proposition 4.27. Let K be a number field, let m be a modulus of K, and let
� 2 dClmK. Then `mK(s,�) is a holomorphic function of s on H(1).

Proof. By Theorem 4.7, it suffices to show that the series defining `mK(s,�) is uni-
formly convergent on compact subsets of H(1). As each compact subset of H(1) is
contained in a closed halfplane of the form H(1 + ✏) for some ✏ > 0, we only need
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to show uniform convergence on sets of this form. Let ✏ > 0, let s 2 H(1 + ✏), and
let � = Re(s). As � > 1 + ✏, and using Proposition 4.26, the modulus of the p-th
term of the series defining `mK(s,�) satisfies

�����

1X

k=1

1

k

✓
�(p̃)

N(p)s

◆k
����� 6

1X

k=1

1

k

✓
1

N(p)�

◆k

6
1X

k=1

1

k

✓
1

N(p)1+✏

◆k

.

But the right-hand side is the modulus of the p-th term of the absolutely convergent
series defining `mK(1+✏,�1). The uniform convergence of `mK(s,�) on H(1 + ✏) follows
by the Weierstrass M-test.

The rest of this chapter involves an investigation of the asymptotic behaviour of
several complex functions of s near s = 1. It will be convenient for us to use big-oh
notation, which is defined for complex functions at a point as follows.
Definition 4.28. Let S ✓ C, and let s0 2 C be a limit point of S. Given functions
f, g and h defined on S, with f and g complex valued and h positive real valued,

f(s) = g(s) +O
�
h(s)

�
as s ! s0 in S

if there are positive real numbers � and C such that

|f(s)� g(s)| 6 Ch(s) 8s 2 S \B�(s0, �).

Remark 4.29. Recall that we say that f(s) ! ` as s ! s0 in S if for all ✏ > 0,
there is a � > 0 such that if s 2 S \ B�(s0, �), then f(s) 2 B(`, ✏). Clearly if
f(s) ! ` as s ! s0 in S, then f(s) = O(1) as s ! s0 in S.

Remark 4.30. In Remark 2.35, we declared that the variable s would always be
complex, whilst the variable � would always be real. By writing “as s ! 1+”, we
mean “as s ! 1 in H(1)”. By writing “as � ! 1+”, we mean “as � ! 1 in (1,1)”.
Proposition 4.31. Let K be a number field and let m be a modulus of K. Then

`mK(s,�1) = �Log(s� 1) +O(1) as s ! 1+.

Proof. As Lm
K(s,�1) has a simple pole at s = 1 with residue ⇢ = hm

K⇢
m
K > 0, we have

lim
s!1

�
(s� 1)Lm

K(s,�1)
�
= ⇢

by Theorem 4.12. In particular, there is a � > 0 such that (s�1)Lm
K(s,�1) 2 B(⇢, 12⇢)

whenever s 2 B�(1, �)\H
�
1� 1

[K:Q]

�
, and we may assume, without loss of generality,

that � < 1
[K:Q] . Refer to Figure 4.2. As ⇢ > 0, clearly B(⇢, 12⇢) ✓ C\(�1, 0], and

so Log is continuous on B(⇢, 12⇢) (Theorem 4.10). Hence the composite function

f : B�(1, �) ! C given by f(s) = Log
�
(s� 1)Lm

K(s,�1)
�

is continuous, and satisfies
lim
s!1

f(s) = Log(⇢).
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1� 1
[K:Q]

1� � 1 + �1
Re(s)

Im(s)

0

Figure 4.2: Equation (4.5.2) holds on the open halfplane to the right of the line
Re(s) = 1 and (4.5.1) holds in the punctured disk centred at 1 of radius �.

For all s 2 H(1), we have

eLog(s�1)+`
m
K (s,�1) = eLog(s�1)e`

m
K (s,�1) = (s� 1)Lm

K(s,�1). (4.5.1)

Also, for all s 2 B�(1, �), we have

ef(s) = eLog[(s�1)Lm
K (s,�1)] = (s� 1)Lm

K(s,�1). (4.5.2)

Hence, for all s 2 H(1) \ B�(1, �), we have

eLog(s�1)+`
m
K (s,�1) = (s� 1)Lm

K(s,�1) = ef(s).

Thus, for all s 2 H(1) \ B�(1, �), there is an ns 2 Z such that

Log(s� 1) + `mK(s,�1) = f(s) + 2ns⇡i.

As
ns =

1

2⇡i

�
Log(s� 1) + `mK(s,�1)� f(s)

�

is a continuous function of s on H(1)\B�(1, �) with a discrete image, it is actually
constant, and so we may write ns = n where n is independent of s. Hence

lim
s!1+

�
Log(s� 1) + `mK(s,�1)

�
= lim

s!1+

�
2n⇡i+ f(s)

�
= 2n⇡i+ Log(⇢).

Proposition 4.32. Let K be a number field, let m = m0 · m1 be a modulus of K,
and let � 2 dClmK. Then

`mK(s,�) =
X

p -m0

�(p̃)

N(p)s
+O(1) as s ! 1+.

Proof. From Proposition 4.26, we need to show that

X

p -m0

1X

k=2

�(p̃)k

kN(p)sk
= O(1) as s ! 1+.
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Let s 2 H(1), and let � = Re(s). Also let n = [K : Q]. We have
������

X

p -m0

1X

k=2

�(p̃)k

kN(p)sk

������
6
X

p -m0

1X

k=2

����
�(p̃)k

kN(p)sk

���� =
X

p -m0

1X

k=2

1

kN(p)�k
6
X

p

1X

k=2

1

N(p)�k

=
X

p

X

p | p

1X

k=2

1

N(p)�k
6
X

p

X

p | p

1X

k=2

1

p�k
6 n

X

p

1X

k=2

1

p�k
,

where the reindexing between the first and second line is possible because every
non-zero prime ideal p of OK lies over exactly one prime ideal pZ, the following
inequality holds as N(p) = pf(p|pZ) > p, and the final inequality holds because there
are at most n = [K : Q] prime ideals p above a given prime ideal pZ. For all prime
numbers p, we have p� > 2 because p > 2 and � > 1, and so 0 < 1

p�
6 1

2 , which
means that 1 > 1� 1

p�
> 1

2 , and thus 1 < (1� 1
p�
)�1 6 2. Hence

1X

k=2

1

p�k
=

1

p2�

 
1

1� 1
p�

!
6 2

1

p2
,

as the left-hand side is a geometric series of ratio p�� < 1. It follows that
������

X

p -m0

1X

k=2

�(p̃)k

kN(p)sk

������
6 n

X

p

1X

k=2

1

p�k
6 2n

X

p

1

p2
6 2n

1X

j=1

1

j2
,

where the right-hand side converges as it is a p-series with p = 2 > 1.

In the next proposition, from what we have already shown, we will derive an
alternate formula for the Dirichlet density. As an immediate corollary, the Dirichlet
density of a finite set is zero, and we will use both the alternate formula and the
corollary in our final proof of the cyclotomic case of Chebotarev’s density theorem,
as well as in Chapter 5 when we reduce the general case to the cyclic case.
Lemma 4.33. Let f be a complex function whose domain includes H(1). Suppose
that f(s) = �Log(s� 1) +O(1) as s ! 1+. Then

lim
s!1+

f(s)

�Log(s� 1)
= 1.

Proof. There are positive real numbers C and � such that |f(s) + Log(s� 1)| 6 C
for all s 2 H(1) \ B�(1, �). So, for all s 2 H(1) \ B�(1, �), we have

����
f(s)

�Log(s� 1)
� 1

���� 6
C

|�Log(s� 1)|
. (4.5.3)

Now |�Log(s� 1)| ! 1 as s ! 1+, and so the right-hand side of (4.5.3) goes to 0
as s ! 1+. By the pinching theorem, the left-hand side of (4.5.3) also goes to 0 as
s ! 1+, and the result follows.
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Proposition 4.34. Let K be a number field, and let A ✓ P (K). Then

�(A) = lim
�!1+

P
p2A N(p)��

�ln(� � 1)
.

That is, the Dirichlet density �(A) of A exists if and only if the above limit exists,
and in this case, their values coincide.

Proof. Recall that �(A) is defined by the limit

�(A) = lim
�!1+

P
p2A N(p)��

P
p2P (K) N(p)��

.

Hence, it suffices to show that

lim
�!1+

P
p2P (K) N(p)��

�ln(� � 1)
= 1.

We will actually show that the corresponding complex limit (i.e. replacing � with s)
holds, from which the real limit follows. By Lemma 4.33, it suffices to show that

X

p2P (K)

N(p)�s = �Log(s� 1) +O(1) as s ! 1+.

Let m = m0 ·m1 be any modulus of K. From Proposition 4.32, we have

`mK(s,�1) =
X

p -m0

N(p)�s +O(1) =
X

p2P (K)

N(p)�s +O(1) as s ! 1+,

where the series on either side of the second equality differ by a finite sum as only
finitely many prime ideals divide m0. From Proposition 4.31, we also have

`mK(s,�1) = �Log(s� 1) +O(1) as s ! 1+.

Corollary 4.35. Let K be a number field, and let A ✓ P (K). If
X

p2A

N(p)�� = O(1) as � ! 1+,

then �(A) = 0. In particular, if A is finite, then �(A) = 0.

Proof. Suppose that there is a positive constant C such that
��P

p2A N(p)��
�� 6 C

for all � 2 (1,1) close enough to 1. If � 2 (1,1) is close enough to 1, then

0 6
����

P
p2A N(p)�s

�ln(� � 1)

���� 6
C

|ln(� � 1)|
,

and the right-hand side tends to 0 as � ! 1+. By the pinching theorem and
Proposition 4.34, the result follows.
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Theorem 4.36 (Chebotarev’s density theorem for cyclotomic extensions). Let K ✓

L ✓ K(⇣) be a tower of number fields, where ⇣ 2 C is a primitive m-th root of unity.
Let G = Gal(L/K), let ⌧ 2 G, and let

P =
n
p 2 P (K) : p unramified in L,

�L/K
p

�
= {⌧}

o
.

Then
�(P ) =

1

|G|
.

Proof. Let m be the modulus mOK ·1 of K. Let

P 0 =
n
p 2 P (K) : p 2 I

m
K ,
⇥L/K

p̃

⇤
m
= ⌧
o
=
n
p 2 P (K) : p - mOK,

⇥L/K
p

⇤
= ⌧
o
.

By Proposition 3.12, all prime ideals of OK which do not divide mOK are unrami-
fied in OL, and so P 0

✓ P . Also, by Corollary 4.35, �(P\P 0) = 0 because the
set P\P 0 is finite. Hence, if �(P 0) exists, then so does �(P ), and �(P ) = �(P 0)
(Proposition 2.47). If we can show that

lim
�!1+

P
p2P 0 N(p)��

�ln(� � 1)
=

1

|G|
,

then Proposition 4.34 will imply that �(P 0) = 1/|G|. It suffices to show that the
corresponding complex limit (i.e. replacing � with s) holds. By Lemma 4.33, it
suffices in turn to show that

(1) f(s) = |G|

X

p2P 0

N(p)�s +O(1) as s ! 1+, and

(2) f(s) = �Log(s� 1) +O(1) as s ! 1+,

where
f(s) =

X

�2 bG

�(⌧�1)`mK(s,� �
⇥L/K

·

⇤
m
).

For (1), Proposition 4.32 implies that

f(s) =
X

�2 bG

�(⌧�1)
⇣X

p -m0

�(
⇥L/K

p

⇤
)N(p)�s +O(1)

⌘

=
X

p -m0

⇣X

�2 bG

�(⌧�1)�(
⇥L/K

p

⇤
)
⌘
N(p)�s +O(1)

= |G|

X

p2P 0

N(p)�s +O(1)

as s ! 1+. Here, the last equality is where we used the second orthogonality
relation (Proposition A.11), which, in this case, says that

X

�2 bG

�(⌧�1)�(
⇥L/K

p

⇤
) =

(
|G| if ⌧ =

⇥L/K
p

⇤
,

0 otherwise.
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For (2), by Proposition 4.31, we know that

`mK(s,�1 �
⇥L/K

·

⇤
m
) = �Log(s� 1) +O(1) as s ! 1+.

Also, Proposition 4.24 implies that

exp
⇣
`mK(1,� �

⇥L/K
·

⇤
m
)
⌘
= Lm

K(1,� �
⇥L/K

·

⇤
m
) 2 C\{0}

whenever � is a non-trivial character of G. Thus, in this case,

`mK(s,� �
⇥L/K

·

⇤
m
) = O(1) as s ! 1+.

Note also that �1(⌧�1) = 1. Hence, as s ! 1+, we have

f(s) = �1(⌧
�1)`mK(s,�1 �

⇥L/K
·

⇤
m
) +

X

�2 bG\{�1}

�(⌧�1)`mK(s,� �
⇥L/K

·

⇤
m
)

= 1 ·
�
�Log(s� 1) +O(1)

�
+

X

�2 bG\{�1}

�(⌧�1) ·O(1)

= �Log(s� 1) +O(1).
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Chapter 5

Deuring’s reduction to the cyclic case

We will use the following notation throughout this section. Let L/K be a Galois
extension of number fields with Galois group G. Let ⌧ 2 G, let H = h⌧i and let
M = LH so that the Galois group Gal(L/M) is H by the fundamental theorem of
Galois theory. Let

P =
n
p 2 P (K) : p is unramified in OL and

�L/K
p

�
= C

o
,

where C is the conjugacy class of ⌧ in G. Similarly, let

Q =
n
q 2 P (M) : q is unramified in OL and

�L/M
q

�
= {⌧}

o
,

where {⌧} is the conjugacy class of ⌧ in H because H is abelian. Let

n =
|G|

|C||H|
.

In this chapter, we will prove the following theorem, due to Deuring [9], which
relates the Dirichlet densities of the sets P and Q. Along the way, we will also show
that n is an integer.
Theorem 5.1. The Dirichlet density of P exists if and only if the Dirichlet density
of Q exists, and in this case they satisfy

�(Q) = n �(P ).

Chebotarev’s density theorem implies that the Dirichlet densities of P and Q
exist, and that they satisfy

�(P ) =
|C|

|G|
and �(Q) =

1

|H|
.

Hence Theorem 5.1 is consistent with Chebotarev’s density theorem.
Throughout this chapter, let

Q0 = {q 2 Q : e(q|q \K) = f(q|q \K) = 1}.

Proposition 5.2. The Dirichlet density of Q0 exists if and only if the Dirichlet
density of Q exists, and in this case,

�(Q0) = �(Q).
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Proof. Let Qe = {q 2 Q : e(q|q \K) > 2} and Qf = {q 2 Q : f(q|q \K) > 2}.
Notice that Q0, Qf and Qe\Qf are pairwise disjoint, and

Q = Q0
[Qf [ (Qe\Qf ).

We will show that �(Qf ) = 0 and that �(Qe\Qf ) = 0, from which a double applic-
ation of Proposition 2.47 gives the desired result.

First, we show that �(Qf ) = 0. For each prime ideal pZ of Z, there are at
most [M : Q] prime ideals q of OM above pZ. If q 2 Qf is a prime ideal above pZ
then the absolute norm N(q) = pf(q|pZ) = pf(q|q\K)f(q\K|pZ) is at least p2 because
f(q|q \K) > 2. Hence, for all � 2 (1,1), we have

X

q2Qf

N(q)�� 6 [M : Q]
X

pZ2P (Q)

p�2� 6 [M : Q]
1X

n=1

n�2,

where the right-hand side is a convergent p-series. By Corollary 4.35, �(Qf ) = 0 .
We now show that �(Qe\Qf ) = 0. Notice that the set Qe is finite because

there are only finitely many non-zero prime ideals of OK which are ramified in OM
(Corollary 2.8), and only finitely many prime ideals of OM above any given non-
zero prime ideal of OK. Hence, the subset Qe\Qf of Qe is also finite, and soP

q2Qe\Qf
N(q)�1 converges. By Corollary 4.35, �(Qe\Qf ) = 0.

To prove Theorem 5.1, it suffices by Proposition 5.2 to instead prove the follow-
ing result.
Proposition 5.3. The Dirichlet density of P exists if and only if the Dirichlet
density of Q0 exists, and in this case they satisfy

�(Q0) = n �(P ).

To prove Proposition 5.3, we begin by constructing a surjective, n-to-1 function
� : Q0

! P which preserves absolute ideal norms. Let

R =
n
P 2 P (L) :

⇥L/K
P

⇤
= ⌧, e(P|P \K) = 1

o
.

Let ' : R ! P be defined by P 7! P \ K for all P 2 R, and let  : R ! Q0 be
defined by P 7! P \ M for all P 2 R. In the following lemmas, we show that  
and ' are well defined, that  is bijective, and that � = '� �1 satisfies the desired
properties.
Lemma 5.4. The number n is an integer, and ' is a surjective, n-to-1 function.

To prove this lemma, we will make use of the notion of the centraliser of a group,
which we recall here for the reader’s convenience.
Definition 5.5. Let G be a group, and let � 2 G. The centraliser CG(�) of � in G
is the set {⇢ 2 G : �⇢ = ⇢�}.

In particular, we will need to know the relationship between the size of the
centraliser of an element and the size of its conjugacy class.
Lemma 5.6. Let G be a group, let � 2 G, and let C be the conjugacy class of �
in G. Then |G| = |CG(�)||C|.
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Proof. The group G acts on the set G via conjugation. Under this action, the
orbit of � is C and the stabiliser of � is CG(�). By the orbit-stabiliser theorem
(Theorem 2.20), |G| = |CG(�)||C|.

We may now return to prove Lemma 5.4.

Proof of Lemma 5.4. We begin by showing that ' is well defined. Let P 2 R and
p = P \K, so that p = '(P). Then p is a prime ideal of OK. Also, L/K is Galois,
so all prime ideals of OL above p have the same ramification index over p as P
(Corollary 2.17), that is, they all have ramification index 1, so p is unramified in L.
Finally, as P is a prime ideal of OL above p, we know that the Artin symbol

�L/K
p

�

is the conjugacy class of the Frobenius element
⇥L/K

P

⇤
= ⌧ in G (Proposition 2.29),

that is,
�L/K

p

�
= C. So p 2 P as required.

It is clear that ' is surjective. Indeed, if p 2 P , then
�L/K

p

�
= C. As ⌧ 2 C,

this means that there is a prime ideal P of OL above p such that
⇥L/K

P

⇤
= ⌧ (Defin-

ition 2.28), and e(P|p) = 1 because p is unramified in OL. Hence P 2 R, and
'(P) = p.

Finally, we show that ' is n-to-1. Let p 2 im', and let Y = '�1({p}). As
p 2 im', Y is non-empty. So let P 2 Y . Let X be the set of prime ideals of OL
above p. Recall that G acts transitively on the set X via ⇢ ·P0 = ⇢(P0) for all ⇢ 2 G
and all P0

2 X (Proposition 2.16). As the centraliser CG(⌧) of ⌧ is a subgroup
of G, it follows that CG(⌧) acts on X with the same action as G. Clearly Y ✓ X.
We claim that Y is the orbit and H is the stabiliser of P under the action of CG(⌧)
on X, and we will apply the orbit-stabiliser theorem to conclude that |Y | = n.

The stabiliser of P under the action of CG(⌧) is the set
�
⇢ 2 CG(⌧) : ⇢(P) = P

 
= CG(⌧) \D(P|p).

However, as p is unramified in OL, we know that the decomposition group D(P|p)
is generated by the Frobenius element

⇥L/K
P

⇤
= ⌧ (Corollary 2.24). Also, if ⇢ 2 h⌧i,

then ⇢ is a power of ⌧ and thus commutes with ⌧ , so ⇢ 2 CG(⌧). Hence h⌧i ✓ CG(⌧).
So the stabiliser of P under the action of CG(⌧) is actually just H = h⌧i.

We wish to show that Y is the orbit O of P under the action of CG(⌧) on X.
As Y ✓ R, and P 2 Y , we know that the Frobenius element

⇥L/K
P

⇤
is ⌧ . Note that

both Y and O are subsets of X. So let P0
2 X. The desired result follows from the

following sequence of equivalent statements:

P0
2 O () 9⇢ 2 CG(⌧). P0 = ⇢(P) (Definition of orbit)

() 9⇢ 2 G. P0 = ⇢(P) and ⇢⌧⇢�1 = ⌧ (Definition of centraliser)

() 9⇢ 2 G. P0 = ⇢(P) and ⇢
⇥L/K

P

⇤
⇢�1 = ⌧ (

⇥L/K
P

⇤
= ⌧)

() 9⇢ 2 G. P0 = ⇢(P) and
⇥L/K
⇢(P)

⇤
= ⌧ (Proposition 2.27)

() 9⇢ 2 G. P0 = ⇢(P) and
⇥L/K

P0

⇤
= ⌧

()
⇥L/K

P0

⇤
= ⌧ (G acts transitively on X)

() P0
2 Y.
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By the orbit-stabiliser theorem (Theorem 2.20) and Lemma 5.6, it follows that

|Y | =
|CG(⌧)|

|H|
=

|G|/|C|

|H|
= n,

and this also implies that n is an integer.

Lemma 5.7. The function  is well defined and bijective.

Proof. We begin by showing  is well defined. Let P 2 R, q = P \ M and
p = P \ K, so that q =  (P), p = '(P), and P lies above q, which lies above p.
Then q is a prime ideal of OM. As L/K is Galois, L/M is also Galois, so all the
prime ideals of OL above q have the same ramification index e and inertial degree
f over q (Corollary 2.17). Now e(P|q)e(q|p) = e(P|p) = 1 (Proposition 2.5), so
e(P|q) = e(q|p) = 1. As P is one of the prime ideals of OL above q, we know
that e = e(P|q) = 1, and so q is unramified in OL. Let g be the number of prime
ideals of OL above q. As p = '(P), we know that D(P|p) = H from the proof of
Lemma 5.4. If P0 is a prime ideal of OL above q, then P0 = ⇢(P) for some ⇢ 2 H
as H acts transitively on the prime ideals of OL above q (Proposition 2.16), but
⇢ 2 D(P|p) which fixes P, so P0 = P. Hence P is the only prime ideal of OL
above q, and so g = 1. Now ord ⌧ = |H| = [L : M] = efg = f = f(P|q), because
h⌧i = H = Gal(L/M), and L/M is Galois, and e = g = 1. But D(P|p) = h⌧i,
so ord ⌧ = f(P|p) (Corollary 2.24). As f(P|p) = f(P|q)f(q|p) (Proposition 2.5),
it follows that f(q|p) = 1. Hence, we also have

⇥L/M
P

⇤
=
⇥L/K

P

⇤f(q|p)
= ⌧ 1 = ⌧

(Proposition 2.31), and thus
�L/M

q

�
is the conjugacy class of ⌧ in H, namely {⌧}. As

q is a prime ideal of OM, q is unramified in OL, and
�L/M

q

�
= {⌧}, we have q 2 Q.

Additionally, we have shown that e(q|p) = f(q|p) = 1, so actually q 2 Q0, and thus
 is well defined.

In the previous paragraph, we also showed that g = 1. This means that for each
q 2 im , there is exactly one prime ideal of OL above q. As every element of the
preimage  �1({q}) is a prime ideal of OL above q, we must have | �1({q})| 6 1,
and so  is injective.

It remains to show  is surjective. Let q 2 Q0. As q is unramified in OL and�L/M
q

�
= {⌧}, there is a prime ideal P of OL lying above q such that

⇥L/M
P

⇤
= ⌧ and

e(P|q) = 1. Let p = q\K. As q 2 Q0, we know that e(q|p) = f(q|p) = 1, so we have
e(P|p) = e(P|q)e(q|p) = 1 (Proposition 2.5), and

⇥L/K
P

⇤
=
⇥L/K

P

⇤f(q|p)
=
⇥L/M

P

⇤
= ⌧

(Proposition 2.31). So P 2 R, and  (P) = q.

Corollary 5.8. The function � is surjective and n-to-1.

Proof. This follows from Lemma 5.7 and Lemma 5.4 as � = ' �  �1.

Lemma 5.9. For all q 2 Q0, we have �(q) = q \K.

Proof. Let q 2 Q0. Let P =  �1(q), which is a prime ideal of OL above q. Then

�(q) = '(P) = P \K = q \K.

Lemma 5.10. For all q 2 Q0, we have N(q) = N(�(q)).
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Proof. Let q 2 Q0, and let p = �(q) so that p = q \ K by Lemma 5.9. Then
f(q|p) = 1 because q 2 Q0. Let Fp = OK/p and Fq = OM/q, where Fp may be
considered a subfield of Fq. Then [Fq : Fp] = f(q|p) = 1, so Fq = Fp and hence
N(p) = |Fp| = |Fq| = N(q).

We now return to prove Proposition 5.3.

Proof of Proposition 5.3. Let � 2 (1,1). By Corollary 5.8, we know that Q0 =S
p2P �

�1({p}) where the union is disjoint and |��1({p})| = n for all p 2 P . Also,
by Lemma 5.10, for all p 2 P and all q 2 ��1({p}) we know that N(q) = N(p). So

X

q2Q0

N(q)�� =
X

p2P

X

q2��1({p})

N(q)�� =
X

p2P

X

q2��1({p})

N(p)�� = n
X

p2P

N(p)��.

Hence P
q2Q0 N(q)��

�ln(� � 1)
= n

P
p2P N(p)��

�ln(� � 1)
.

Taking the limit as � ! 1+, we find that �(P ) exists if and only if �(Q0) exists
(Proposition 4.34), and in this case, that �(Q0) = n �(P ).

This completes the proof of Theorem 5.1. The following is a direct corollary.
Corollary 5.11. The Dirichlet density of P exists and equals |C|

|G|
, if and only if the

Dirichlet density of Q exists and equals 1
|H|

.
Hence to prove Chebotarev’s density theorem in general, it suffices to prove the

special case of the theorem where the field extension under consideration is abelian,
which we will do in Chapter 6.
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Chapter 6

The abelian case

The main result of this chapter is the abelian case of Chebotarev’s density theorem,
which is stated in Theorem 6.1. The general case of Chebotarev’s theorem follows
from Theorem 6.1 by Corollary 5.11.
Theorem 6.1 (Chebotarev’s density theorem for abelian extensions). Let L/K be
a finite abelian extension of number fields with Galois group G. For each ⌧ 2 G, let

P⌧ =
n
p 2 P (K) : p is unramified in OL,

�L/K
p

�
= {⌧}

o
.

Then for each ⌧ 2 G, the Dirichlet density of P⌧ exists, and satisfies

�(P⌧ ) =
1

|G|
.

Our proof of Theorem 6.1 elaborates on Part G of Section 6.5 in Fried and
Jarden [13]. It has the following structure. In Section 6.1, by summing the Dirichlet
densities (which exist by the cyclotomic case of Chebotarev’s density theorem) of
disjoint subsets {P⌧,�}�2S⌧ of P⌧ , where S⌧ is a subset of the Galois group H of
any auxiliary extension M/K which satisfies certain properties, we obtain the lower
bound |S⌧ |

|G||H|
for �inf(P⌧ ) which is dependent on the field M. In Section 6.2, we show

that we can actually construct an M so that M/K has these properties, but also so
that |S⌧ |

|H|
is arbitrarily close to 1, thus strengthening the lower bound for �inf(P⌧ ) to

1
|G|

. Finally, in Section 6.3, we use the lower bound on �inf(P⌧ ) to show that 1
|G|

is
also an upper bound for �sup(P⌧ ), thus proving that �(P⌧ ) exists and equals 1

|G|
.

6.1 A lower bound on the Dirichlet density
Proposition 6.2. Assume the same notation as in Theorem 6.1. Suppose M/K is
a cyclic cyclotomic field extension with Galois group H, such that M \ L = K. Let
 : Gal(LM/K) ! G⇥H be the isomorphism ⇢ 7! (⇢|L , ⇢|M). For each ⌧ 2 G, let

S⌧ =
�
� 2 H : ord ⌧ | ord �

 
.

Also, for each ⌧ 2 G and each � 2 H, let

P⌧,� =
n
p 2 P (K) : p is unramified in OLM,

�LM/K
p

�
=
�
 �1(⌧, �)

 o
.

75



Then for each ⌧ 2 G, the lower Dirichlet density of P⌧ , which always exists, satisfies

�inf(P⌧ ) >
|S⌧ |

|G||H|
.

Remark 6.3. The statement of Proposition 6.2 assumes that LM/K is abelian
(in the definition of P⌧,�) and that  is a group isomorphism. Both assumptions
follow from Proposition 2.11 because L/K and M/K are abelian and M \ L = K.

To prove Proposition 6.2, we need the following Lemma.
Lemma 6.4. Assume the same notation as in Proposition 6.2. Then for each ⌧ 2 G
and each � 2 S⌧ , the Dirichlet density of the set P⌧,� exists and satisfies

�(P⌧,�) =
1

|G||H|
.

Proof. Let ⌧ 2 G and � 2 S⌧ . Let ⇢ =  �1(⌧, �), and let E = (LM)h⇢i, so that
Gal(LM/E) = h⇢i by the fundamental theorem of Galois theory. We will show that
LM/E is a cyclotomic extension.

LM

EM

L E M

E \M

K

⌧

⇢

�

We claim that LM = EM. As M/K is cyclotomic, it is Galois, and this implies
that EM/E is also Galois and Gal(EM/E) ⇠= Gal(M/E\M) (Proposition 2.9). Now
E \M = (LM)h⇢i \M = Mh⇢i = Mh�i because ⇢|M = �, so Gal(M/E \M) = h�i.
Also, we know that ord(⇢) = lcm(ord(⌧), ord(�)) = ord(�) because ord(⌧) divides
ord(�), so Gal(M/E\M) = h�i ⇠= h⇢i = Gal(LM/E). From all of this, we find that

[EM : E] = |Gal(EM/E)| = |Gal(M/E \M)| = |Gal(LM/E)| = [LM : E]

because EM/E and LM/E are Galois. Applying the tower law to the tower of
extensions E ✓ EM ✓ LM, we find that [LM : EM] = 1 and so LM = EM.

As M/K is cyclotomic, there is a root of unity ⇣ such that M ✓ K(⇣). Now
LM = EM ✓ EK(⇣) = E(⇣) because K ✓ E and M ✓ K(⇣), so LM/E is cyclotomic.

Let
Q =

n
q 2 P (E) : q is unramified in OLM,

�LM/E
q

�
= {⇢}

o
.

Applying the cyclotomic case of Chebotarev’s density theorem (Theorem 4.36) to
the cyclic cyclotomic extension LM/E, we find that the Dirichlet density of Q exists
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and satisfies �(Q) = 1/|Gal(LM/E)|. As E = (LM)h⇢i, we may apply Theorem 5.1
to the tower of extensions K ✓ E ✓ LM to conclude that �(P⌧,�) exists and satisfies

�(P⌧,�) =

✓
|Gal(LM/K)|

|{⇢}||Gal(LM/E)|

◆�1

�(Q) =
⇣
|G||H|�(Q)

⌘�1

�(Q) =
1

|G||H|
.

Proof of Proposition 6.2. Let ⌧ 2 G. By Lemma 6.4, we know that �(P⌧,�) =
1

|G||H|

for each � 2 S⌧ . Also, if � and �0 are distinct elements of S⌧ , then P⌧,� and P⌧,�0

are disjoint, because  is a bijection. Hence, by Proposition 2.47, we have

�
⇣ [

�2S⌧

P⌧,�

⌘
=
X

�2S⌧

�(P⌧,�) =
|S⌧ |

|G||H|
.

If we can show that
S

�2S⌧
P⌧,� ✓ P⌧ , then it would follow that

�inf(P⌧ ) > �inf
⇣ [

�2S⌧

P⌧,�

⌘
= �
⇣ [

�2S⌧

P⌧,�

⌘
=

|S⌧ |

|G||H|
,

finishing our proof of the proposition. Indeed, let � 2 S⌧ and let p 2 P⌧,�. Then
p 2 P (K) and

�LM/K
p

�
= { �1(⌧, �)}. But L is an intermediate field of the extension

LM/K, and the extension L/K is normal. Hence, by Proposition 2.31, we have

⇥L/K
p

⇤
=
⇥LM/K

p

⇤���
L
=  �1(⌧, �)

��
L = ⌧,

which means that
�L/K

p

�
= {⌧}, and thus p 2 P⌧ .

6.2 A stronger lower bound on the Dirichlet density
To strengthen the lower bound on �inf(P⌧ ) given in Proposition 6.2, we would like
to eliminate the dependence of the result on the field M. First, we will show that
we can actually construct, for each m, a cyclic cyclotomic field extension M/K of
degree m such that M\L = K; then, we will show that we can make |S⌧ |

|H|
arbitrarily

close to 1 through our choice of m. From this, we will deduce that �inf(P⌧ ) > 1
|G|

.

6.2.1 Constructing cyclic cyclotomic field extensions
The aim of this subsection is to prove the following proposition.
Proposition 6.5. Let L/K be a finite Galois extension of number fields, and let
m > 1. Then there exists a cyclic cyclotomic extension M/K of degree m with
M \ L = K.

We begin by proving the following special case of Proposition 6.5, where K is
actually Q, and where L/Q is cyclotomic.
Lemma 6.6. Let L/Q be a finite cyclotomic extension, and let m > 1. Then there
exists a cyclic cyclotomic extension M/Q of degree m such that M \ L = Q.

Proof. As L/Q is cyclotomic, there is a primitive n-th root of unity ⇣n such that
L ✓ Q(⇣n). By Dirichlet’s theorem on prime numbers in arithmetic progressions
(Theorem 3.14), there is a prime p > n such that m | p � 1. Now Q(⇣p)/Q is a
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cyclic extension of degree p� 1. Let ⌫ be a generator of J = Gal(Q(⇣p)/Q), and let
H = h⌫mi. Note that H is a normal subgroup of J , and

J

H
⇠=

Z/(p� 1)Z
mZ/(p� 1)Z

⇠=
Z
mZ

by the second isomorphism theorem as m | p� 1. Hence J/H is cyclic of order m.
Let M = Q(⇣p)H . Then by the fundamental theorem of Galois theory, M/Q is
Galois and Gal(M/Q) ⇠= J/H is cyclic of order m. So M/Q is a cyclic cyclotomic
extension, and [M : Q] = m. Finally, M \ L ✓ Q(⇣p) \Q(⇣n) = Q as gcd(p, n) = 1
(Proposition 3.10).

To generalise Lemma 6.6, we need the following result about the existence of a
greatest cyclotomic intermediate field.
Lemma 6.7. Let L be a number field. Let C be the collection of intermediate fields
of the extension L/Q which are cyclotomic over Q. Then C is non-empty, and
contains a field L0 which is greatest with respect to inclusion.

Proof. The extension Q/Q is trivially cyclotomic, so C contains Q, and thus is non-
empty. As there is an extension of L which is Galois over Q, by the fundamental
theorem of Galois theory, there are only finitely many elements in C , say E1, . . . ,Ek.
Let L0 be the compositum E1E2 · · ·Ek. We claim that L0 is in C . It suffices to show
that if E and E0 are elements of C then so is the compositum EE0, and then use
induction on k. It is clear that EE0 is an intermediate field of L/Q. Let ⇣s and ⇣t
be primitive s-th and t-th roots of unity such that E ✓ Q(⇣s) and E0

✓ Q(⇣t). Let
⇣st be a primitive (st)-th root of unity. Then ⇣s and ⇣t are powers of ⇣st, and so
EE0

✓ Q(⇣s, ⇣t) ✓ Q(⇣st). Hence EE0 is cyclotomic, and thus is in C . As L0 is the
compositum of all fields in C , all fields in C are subfields of L0, and thus L0 is the
greatest element of C with respect to inclusion.

Using Lemma 6.6, we now prove the following more general case of Proposi-
tion 6.5 which no longer requires L/Q to be cyclotomic.
Lemma 6.8. Let L/Q be a finite extension, and let m > 1. Then there exists a
cyclic cyclotomic extension M/Q of degree m such that M \ L = Q.

Proof. Let L0 be the greatest intermediate field of L/Q which is cyclotomic over Q,
which exists by Lemma 6.7. Applying Lemma 6.6 to the extension L0/Q, there
exists a cyclic cyclotomic extension M/Q of degree m such that M \ L0 = Q. We
need to show that M \ L = Q.

L

L0 Q(⇣)

L \Q(⇣) M

Q
m
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As M/Q is cyclotomic, there is a root of unity ⇣ such that M ✓ Q(⇣). Notice
that Q ✓ Q(⇣) \ L ✓ L, and Q(⇣) \ L ✓ Q(⇣), so Q(⇣) \ L is an intermediate field
of L/Q which is cyclotomic over Q. As L0 is the greatest intermediate field of L/Q
which is cyclotomic over Q, we know that Q(⇣) \ L ✓ L0. Hence

Q ✓ M \ L = (M \Q(⇣)) \ L = M \ (Q(⇣) \ L) ✓ M \ L0 = Q,

and thus M \ L = Q as required.

Finally, using Lemma 6.8, we return to prove Proposition 6.5.

Proof of Proposition 6.5. Recall that L/K is a finite Galois extension of number
fields, and m is a positive integer. By Lemma 6.8, there exists a cyclic cyclotomic
extension M0/Q of degree m such that M0

\L = Q and m = [M0 : Q]. Let M = KM0.
We need to show that M/K is a cyclic cyclotomic extension of degree m, and that
M \ L = K.

M00 K(⇣)

L M Q(⇣)

K M0

Q
m

Firstly, Q ✓ M0
\ K ✓ M0

\ L = Q so M0
\ K = Q. Hence M/K is Galois

and Gal(M/K) ⇠= Gal(M0/Q) (Proposition 2.9). It follows immediately that M/K
is degree m and cyclic. As M0/Q is cyclotomic, there is a root of unity ⇣ such that
M0

✓ Q(⇣). Notice that K ✓ M ✓ KQ(⇣) = K(⇣), so M/K is cyclotomic.
Finally, let M00 = LM0 (= LM). As M0

\ L = Q, we know that Gal(M00/L) ⇠=
Gal(M0/Q) (Proposition 2.9). Hence the degree of M00/L is m. As L/K and M/K
are both Galois, we know that M \ L = K if and only if [M00 : K] = [M : K] [L : K]
(Proposition 2.11). But [M00 : K] = [M00 : L] [L : K] = m [L : K] = [M : K] [L : K] ,
so M \ L = K as required.

6.2.2 Number of elements in a cyclic group with order divisible by a given integer
Having shown that we can construct a cyclic cyclotomic field extension M/K of
degree m with M \ L = K, it remains to show how to choose m to make |S⌧ |

|H|

“arbitrarily close” to 1. That is the focus of this subsection. We start by showing
how to compute the ratio |S⌧ |

|H|
explicitly, first in the special case where H is a

cyclic group of prime power order, and then more generally. To do so, we need the
following well-known result about the order of elements in a cyclic group.
Lemma 6.9. If H = h⌫i is a cyclic group of order m, then for all k > 0, we have

ord(⌫k) =
m

gcd(m, k)
.
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Lemma 6.10. Let a and b be integers such that 1 6 a 6 b. Let H be a cyclic group
of order pb, where p is a prime number. Let S = {� 2 H : pa | ord �}. Then

|S| = pb � pa�1.

Proof. Using Lemma 6.9, we may express S in terms of a generator ⌫ of H as

S =
n
⌫k : 0 6 k < pb, pa | p

b

gcd(pb,k)

o
.

For all integers k, as gcd(pb, k) | pb and p is prime, there is an integer c in the
range 0 6 c 6 b such that gcd(pb, k) = pc. For all integers c such that 0 6 c 6 b, let

Sc =
�
⌫k : 0 6 k < pb, gcd(pb, k) = pc

 
.

As pa | pb�c if and only if b � c > a, if and only if c 6 b � a, it follows that
S =

S
06c6b�a

Sc where the union is disjoint, and so

|S| =
b�aX

c=0

|Sc|.

It is clear that Sc = {⌫jp
c
: 0 6 j < pb�c, gcd(pb�c, j) = 1}, and so

|Sc| = '(pb�c) = pb�c
� pb�c�1,

where ' is the Euler totient function. Hence

|S| =
b�aX

c=0

(pb�c
� pb�c�1) = pb � pb�(b�a)�1 = pb � pa�1.

We now prove the following generalisation of the previous result.
Proposition 6.11. Let n be a positive integer, with prime factorisation pa11 · · · par

r
,

where ai > 1 for all 1 6 i 6 r. Let m = pb11 · · · pbr
r

where bi > ai for all 1 6 i 6 r.
Let H be a cyclic group of order m, and S = {� 2 H : n | ord �}. Then

|S| = |H|

rY

i=1

(1� pai�bi�1
i

).

Proof. Recall that H is a cyclic group of order m = pb11 · · · pbr
r

. By the fundamental
theorem of finite abelian groups, we may write H as the internal direct sum H =
H1 � · · ·�Hr where Hi 6 H is a cyclic group of order pbi

i
for each integer i in the

range 1 6 i 6 r.
Let � 2 H. Then � = �1 · · · �r, for some unique elements �1 2 H1, . . ., �r 2 Hr.

For each integer i in the range 1 6 i 6 r, we know that the order of �i divides
|Hi| = pbi

i
by Lagrange’s theorem, so the order of �i is pci

i
for some integer ci in the

range 1 6 ci 6 bi. Clearly the orders of the �i are pairwise coprime, and thus

ord(�) = lcm(ord(�1), . . . , ord(�r)) = ord(�1) · · · ord(�r) = pc11 · · · pcr
r
.
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Now n divides the order of � if and only if ai 6 ci for all 1 6 i 6 r, that is, if and
only if pai

i
divides the order of �i for all 1 6 i 6 r. By Lemma 6.10, the number

of �i in Hi such that pai
i

divides the order of �i is pbi
i
� pai�1

i
. It follows that the

number of � in H for which n divides the order of � is
rY

i=1

(pbi
i
� pai�1

i
) = |H|

rY

i=1

(1� pai�bi�1
i

).

The following result is a corollary to Proposition 6.11.
Corollary 6.12. Let n 2 Z+. For all ✏ > 0, there is an m 2 Z+ such that

|S|

|H|
> 1� ✏

for all cyclic groups H of order m, where S = {� 2 H : n | ord �}.

Proof. Let n = pa11 · · · par
r

be the prime factorisation of n. Let ✏ > 0. For each
integer i in the range 1 6 i 6 r, we know that

lim
b!1

(1� pai�b�1)r =
⇣
lim
b!1

1� pai�b�1
⌘r

= 1r = 1,

so there is an integer bi > ai such that (1 � pai�bi�1)r > 1 � ✏, that is, such that
1� pai�bi�1 > r

p
1� ✏. Let m = pb11 · · · pbr

r
, and let H be a cyclic group of order m.

Let S = {� 2 H : n | ord �}. By Proposition 6.11, we know that

|S|

|H|
=

rY

i=1

(1� pai�bi�1
i

) >
rY

i=1

r
p
1� ✏ = 1� ✏.

6.2.3 Proof of the stronger lower bound
We may now state and prove the main result of this section.
Proposition 6.13. Assume the same notation as in Theorem 6.1. Then for each
⌧ 2 G, the lower Dirichlet density of P⌧ satisfies

�inf(P⌧ ) >
1

|G|
.

Proof. Let ⌧ 2 G and let ✏ > 0. From Corollary 6.12 with n = ord(⌧), there is a
positive integer m such that if M/K is a cyclic extension of degree m, then

|S⌧ (M/K)|

|Gal(M/K)|
> 1� ✏.

By Proposition 6.5, we can construct an extension M/K which satisfies these prop-
erties, but which is also a cyclotomic extension with M \ L = K.
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Combining this result with Proposition 6.2, for all ⌧ 2 G and all ✏ > 0, there
exists a cyclic cyclotomic field extension M/K such that M \ L = K and

�inf(P⌧ ) >
1

|G|

|S⌧ (M/K)|

|Gal(M/K)|
>

1

|G|
(1� ✏).

As this inequality is true for all ✏ > 0, we find for all ⌧ 2 G that actually

�inf(P⌧ ) > sup
✏>0

⇢
1

|G|
(1� ✏)

�
=

1

|G|
.

6.3 Proof of the abelian case
We now return to prove the main theorem of this chapter.

Proof of Theorem 6.1. Let ⌧ 2 G. Recall that �(P (K)) = 1 (Proposition 2.46).
Hence, by Remark 2.48, we have

1 = �(P (K)) = �sup(P⌧ ) + �inf(P (K)\P⌧ ) (6.3.1)

Letting P be the set of non-zero prime ideals of OK which are ramified in OL,
the union

P (K)\P⌧ = P [

⇣ [

�2G\{⌧}

P�

⌘

is disjoint. So Proposition 2.47 implies that

�inf(P (K)\P⌧ ) > �inf(P ) +
X

�2G\{⌧}

�inf(P�). (6.3.2)

But P is a finite set (Corollary 2.8), so �(P ) = 0 (Corollary 4.35), so �inf(P ) = 0.
Also �inf(P�) > 1

|G|
for each � 2 G (Proposition 6.13). Hence (6.3.2) becomes

�inf(P (K)\P⌧ ) >
X

�2G\{⌧}

1

|G|
= 1�

1

|G|
,

and we may combine this with (6.3.1) to conclude that

�sup(P⌧ ) 6
1

|G|
.

Hence, by Proposition 6.13 and Proposition 2.46, we have

1

|G|
6 �inf(P⌧ ) 6 �sup(P⌧ ) 6

1

|G|
,

and so all of these inequalities must actually be equalities. By Proposition 2.46, it
follows that �(P⌧ ) exists, and it satisfies

�(P⌧ ) = �inf(P⌧ ) = �sup(P⌧ ) =
1

|G|
.
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Appendix A

Characters of finite abelian groups

In this appendix, we introduce the theory of characters of finite abelian groups. This
notion is central to the proof of the cyclotomic case of Chebotarev’s density theorem
in Chapter 4, starting with our definition of the Weber L-functions in Section 4.1.
Our treatment of character theory follows Chapter 6 of Apostol [2].
Definition A.1. A character of a finite abelian group G is a group homomorphism

� : G ! C⇥.

Example A.2. The trivial character of G is the homomorphism �1 given by

�1(g) = 1 8g 2 G.

Remark A.3. The character group of a finite abelian group G, denoted bG, is
the group whose elements are the characters of G and whose operation is pointwise
multiplication of characters � i.e. for all �,�0

2 bG, the character ��0 is defined by

(��0)(g) = �(g)�0(g) 8g 2 G.

The identity element of bG is �1.
We begin by considering the relation between the characters of G and the char-

acters of its subgroups. Clearly if � is a character of G and H 6 G, then the
restriction of � to H is a character of H. A natural question to ask is: for each
character � of H, how many of the characters of G have � as their restriction to H?
In other words, how many ways are there to extend a character of H to a character
of G? This will be the focus of the next proposition. To extend a character � of H
to a character of G, we will, as an intermediate step, extend � to a character �0 of
the subgroup hH, gi of G for some g 2 G\H. Here, by hH, gi, we mean the subgroup
of G generated by the set H [ {g}. The following lemma, which characterises the
elements of hH, gi, will be useful when constructing �0.
Lemma A.4. Let G be a finite abelian group, let H 6 G and let g 2 G. Then

(i) There is a smallest positive integer i such that gi 2 H. We call i the indicator
of g in H.

(ii) The subgroup hH, gi of G may be enumerated explicitly as

hH, gi = {hgk : h 2 H, 0 6 k < i},

and |hH, gi| = i|H|.
Remark A.5. The properties |hH, gi| = i|H| and i = [hH, gi : H] are equivalent.
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Proof. For the first property, note that as G is finite, g has a finite order, say n,
and we have gn = 1 2 H. By the well-ordering principle, there must be a smallest
positive integer i for which gi 2 H.

For the equality of sets in the second property, the inclusion of the right-hand
side set into the left-hand side set is obvious. For the other inclusion, we proceed
as follows. As hH, gi is generated by the set H [ {g}, each element of hH, gi is a
word of the form g1g2 · · · gn where n is a natural number, and each gi either satisfies
gi 2 H [ {g} or g�1

i
2 H [ {g}. Here, the zero length word is by convention the

identity element of G. As H is a subgroup of G, if g�1
i

2 H, then also gi 2 H. Hence
each gi is an element of the set H [{g, g�1

}. As G is abelian, we may rearrange the
gi, collecting together all of the elements of H, which multiply together to give a
single element h0

2 H, and collecting together all of the remaining elements (which
are either g or g�1) into a single power gm of g. By the division algorithm, m = qi+r
for some integers q and i with 0 6 i < r, and so gm = (gi)qgr, where (gi)q 2 H.
Hence, letting h = h0(gi)q, our word is equal to hgr where 0 6 r < i and h 2 H.

It remains to show that |hH, gi| = i|H|. Suppose now that hgk = h0gj for some
h, h0

2 H and some integers k and j satisfying 0 6 k, j < i. Assume without loss of
generality that k > j. Then gk�j = h�1h0

2 H. As i is the smallest positive power
of g in H, and k� j > 0, we must have k� j = 0, and thus also h�1h0 = g0 = 1. So
k = j and h = h0. It follows that as h ranges over H and k ranges over 0 6 k < i,
we get i|H| distinct elements of the form hgk.

Proposition A.6. Let G be a finite abelian group. Then for each subgroup H of
G there are [G : H] ways to extend a character of H to a character of G.

Proof. We proceed by induction on the index [G : H]. For the base case, note that
H = G is the only index 1 subgroup of G, and there is exactly one way to extend
each character � of H to a character of G because � is already a character of G.

Let j be an integer greater than 1, and suppose that the proposition holds for
all subgroups of G of index less than j. Suppose that H is a subgroup of G with
[G : H] = j, and let � be a character of H. As H 6= G, there is a g 2 G\H,
and we have H < hH, gi 6 G and [G : hH, gi] < [G : H] = j because g /2 H. We
wish to show that there are [G : H] = [G : hH, gi] [hH, gi : H] ways to extend � to a
character of G. It suffices in turn to show that there are [hH, gi : H] ways to extend
� to a character of hH, gi, because each such character of hH, gi may be extended
to [G : hH, gi] 6 j � 1 characters of G by the induction hypothesis.

Recall Lemma A.4, which says that

hH, gi = {hgk : h 2 H, k 2 {0, 1, . . . , i� 1}}

where i = [hH, gi : H] is the indicator of g in H. Suppose first that �0 is an extension
of � to a character of hH, gi. As �0 is a group homomorphism, we have

�0(hgk) = �0(h)�0(g)k = �(h)�0(g)k
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for all h 2 H and all integers k satisfying 0 6 k < i. This means that �0 is
determined by where it sends g. Recall that gi 2 H, so we have

�(gi) = �0(gi) = �0(g)i,

and thus �0(g) must be an i-th root of �(gi). This gives us i distinct candidates
for extensions of � to characters of hH, gi, namely the maps defined by sending g
to each of the i distinct i-th roots of �(gi). We will show that each such candidate
is indeed a character of hH, gi. Indeed, let ↵ be an i-th root of �(gi), and define
�0 : hH, gi ! C⇥ by

�0(hgk) = �(h)↵k

for all h 2 H and all integers k satisfying 0 6 k < i. We need to check that �0 is
a group homomorphism. Let hgk and h0gj be arbitrary elements of hH, gi, where
h, h0

2 H and k and j are integers satisfying 0 6 k, j < i. By the division algorithm,
we may write k+ j = qi+r for some integers q and r such that 0 6 r < i. It follows
that

�0(hgk · h0gj) = �0(hh0(gi)q · gr) = �(hh0(gi)q)↵r = �(h)�(h0)�(gi)q↵r

= �(h)�(h0)(↵i)q↵r = �(h)�(h0)↵k↵j = �0(hgk)�0(h0gj).

Corollary A.7. If G is a finite abelian group of order n, then there are exactly n
characters of G. In particular, if G is cyclic and g 2 G is a generator of G, then
the characters of G are determined by mapping g to each of the n distinct n-th roots
of unity in C⇥.

Proof. If � is a character of G, then �(1) = 1, and thus the restriction of � to the
subgroup h1i is the trivial character �1 of h1i. In other words, every character of G
is an extension of the character �1 of h1i to a character of G. By Proposition A.6,
the character �1 of h1i can be extended in [G : h1i] = |G| ways to a character of
G. Thus the number of characters of G is |G|. In the case that G is cyclic and
generated by g, we have G = hh1i, gi, and thus G is obtained by one step of the
inductive procedure outlined in the proof of Proposition A.6. Here, the indicator
of g in h1i is the order of g, namely n, and so each extension of the character �1

of h1i to a character of G comes from sending g to one of the n distinct n-th roots
of �1(gn) = 1.

The next proposition is just a restatement of the specific case of the previous
proposition where H = hgi into the language of polynomials.
Proposition A.8. Let G be a finite abelian group, and let g 2 G. Then

Y

�2 bG

(1� �(g)X) = (1�Xf )|G|/f

holds in C[X], where f is the order of g in G.

Proof. Clearly both polynomials in the equality above have constant term 1, so to
show that they are equal, it suffices to show that they have the same roots and with
the same multiplicities. The roots of the polynomial on the right-hand side of the

85



equality are all of the f -th roots of unity, each with multiplicity |G|/f = [G : hgi].
As hgi is cyclic, there are exactly f characters of hgi, each one determined by sending
the generator g�1 to one of the f distinct f -th roots of unity (Corollary A.7). Hence,
the roots of the polynomial on the right-hand side of the equality are the values
�0(g�1) as �0 ranges over chgi, each with multiplicity [G : hgi]. Also, the roots of the
polynomial on the left-hand side of the equality are the values

�(g�1) = �|
hgi

(g�1)

as � ranges over bG. Hence the result amounts to proving the following two facts:
• the restriction of each character � of G to hgi is a character �0 of hgi, and
• for each character �0 of hgi, there are exactly [G : hgi] characters � of G whose

restriction to hgi is �0,
which we already did in Proposition A.6.

Our next aim is to prove the well-known first and second orthogonality relations.
Proposition A.9. Let G be a finite abelian group of order n, let g 2 G and let
� 2 bG. Then �(g) is an n-th root of unity.

Proof. We know that the order of g divides n by Lagrange’s theorem, and so

�(g)n = �(gn) = �(1) = 1.

Corollary A.10. Let G be a finite abelian group of order n, let g 2 G and let
� 2 bG. Then

��1(g) = �(g�1) = �(g).

Proof. Indeed, �(g�1) = �(g)�1 as � is a group homomorphism. As the group
operation of bG is pointwise multiplication, ��1(g) = �(g)�1. Finally �(g)�1 = �(g)
because �(g) is a complex root of unity.

We may now prove the well-known first and second orthogonality relations,
stated in the following proposition.
Proposition A.11 (Orthogonality relations). Let G = {g1, . . . , gn} be a finite
abelian group of order n, with characters bG = {�1, . . . ,�n}. Then

(i)
X

g2G

�i(g)�j(g) = n�ij.

(ii)
X

�2 bG

�(gi)�(gj) = n�ij.

Remark A.12. Recall that the Kronecker delta symbol �ij is given by

�ij =

(
1 if i = j,

0 otherwise.

Proof. We may assume without loss of generality that �1 is the trivial character.
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We begin by showing that the first orthogonality relation holds in the case that
j = 1, that is, when �j is the trivial character. Indeed, let

S =
X

g2G

�i(g)�1(g) =
X

g2G

�i(g)

denote the sum of interest. If i = 1, then �i(g) = 1 for all g 2 G, and so S = n.
Suppose now that i 6= 1. Then as �i is not identically 1, there is an element h 2 G
for which �i(h) 6= 1. Recall that the map g 7! hg is an permutation of G, so as k
ranges between 1 and n, hgk ranges over all of the elements of G. Hence

S =
nX

k=1

�i(hgk) = �i(h)
nX

k=1

�i(gk) = �i(h)S,

and so S
�
1� �i(h)

�
= 0. As �i(h) 6= 1, we must have S = 0. Hence S = n�i1.

We now show that the first orthogonality relation holds in general. Recall that
bG is a group under pointwise multiplication, with identity element �1 and inverses
given by ��1(g) = �(g) for all � 2 bG and all g 2 G. Hence we have

nX

k=1

�i(gk)�j(gk) =
nX

k=1

�i(gk)�
�1
j
(gk) =

nX

k=1

(�i�
�1
j
)(gk).

As inverses in a group are unique, �i�
�1
j

= �1 if and only if i = j, and so the result
now follows from the previous special case of the first orthogonality relation.

We will deduce the second orthogonality relation from the first by using the
property that a matrix commutes with its inverse. Let A denote the matrix1 whose
entry in the i-th row and j-th column is given by [A]ij = �i(gj), and let A⇤ denote
the conjugate transpose of the matrix A. Then the first orthogonality relation
amounts to the fact that AA⇤ = nI where I is the n ⇥ n identity matrix. Indeed,
we have

[AA⇤]ij =
nX

k=1

[A]ik[A
⇤]kj =

nX

k=1

[A]ik[A]jk =
nX

k=1

�i(gk)�j(gk) = n�ij

and so AA⇤ = nI. This means that 1
n
A⇤ is the inverse of A, and so we also have

A⇤A = nI because a matrix always commutes with its inverse. Considering the
latter equality entrywise, we obtain the second orthogonality relation

n�ij = [A⇤A]ij =
nX

k=1

[A⇤]ik[A]kj =
nX

k=1

[A]ki[A]kj =
nX

k=1

�k(gi)�k(gj).

1The matrix A is known as the character table of G.
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Appendix B

Infinite products

Infinite products are an important component of the argument for the abelian case of
Chebotarev’s density theorem. Our treatment here is similar to that in Section 2.2
of Chapter 5 of Ahlfors [1, pp. 191–193].
Definition B.1. Let (uk)1k=1 be a sequence of non-zero complex numbers. If the
limit

P = lim
n!1

nY

k=1

uk

exists and P 6= 0, then we say that the infinite product
Q

1

k=1 uk converges to P ,
and write

1Y

k=1

uk = P.

Otherwise we say that the infinite product diverges.
Remark B.2. We have defined convergence of the infinite product

Q
1

k=1 uk with
the unusual requirement that P 6= 0 so that its convergence is equivalent to the
convergence of the series

P
1

k=1 Log(uk), as we will prove shortly.
Remark B.3. The definition of convergence of an infinite product can be gener-

alised to handle the possibility that finitely many of the factors are zero, by saying
that an infinite product converges to zero if the product of its non-zero factors con-
verges. However, we do not need this level of generality for the purposes of proving
Chebotarev’s density theorem.
Proposition B.4. Let (uk)1k=1 be a sequence of non-zero complex numbers. IfQ

1

k=1 uk converges, then limn!1 un = 1.

Proof. Let P =
Q

1

k=1 uk. Then P 6= 0 by the definition of convergence, and so

lim
n!1

un =
limn!1

Q
n

k=1 uk

limn!1

Q
n�1
k=1 uk

=
P

P
= 1.

Recall the following definition of the principal branch of the complex logarithm.
Definition B.5. The principal branch of the complex logarithm is the function
Log : C\{0} ! C given by

Log(z) = ln|z|+ iArg(z) 8z 2 C\{0},

where Arg(z) is the principal argument of z, that is, Arg(z) is the argument of z in
the interval (�⇡, ⇡].
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In an introductory course on complex analysis, one proves the following result.
Proposition B.6. The function Log is holomorphic on C\(�1, 0] with derivative
given by

Log0(z) =
1

z
8z 2 C\(�1, 0],

and it is discontinuous on (�1, 0).
We only need the fact that Log is continuous on C\(�1, 0], which follows from

this result.
Proposition B.7. Suppose that (uk)1k=1 is a sequence of non-zero complex num-
bers. Then the the product

Q
1

k=1 uk converges if and only if the sum
P

1

k=1 Log(uk)
converges, and in this case we have

1Y

k=1

uk = exp
⇣ 1X

k=1

Log(uk)
⌘
.

Proof. As the uk are all non-zero, Log(uk) is always defined. Also, for each n 2 Z+,
there is an mn 2 Z such that

Arg
⇣ nY

k=1

uk

⌘
=

nX

k=1

Arg(uk) + 2mn⇡,

and thus

Log
⇣ nY

k=1

uk

⌘
=

nX

k=1

Log(uk) + 2mn⇡i.

Suppose that the sum
P

1

k=1 Log(uk) converges. Note that exp is continuous
on C, and also that

nY

k=1

uk = exp

✓
Log

⇣ nY

k=1

uk

⌘◆

= exp
⇣ nX

k=1

Log(uk) + 2mn⇡i
⌘
= exp

⇣ nX

k=1

Log(uk)
⌘
.

Hence, the limit

lim
n!1

nY

k=1

uk = exp
⇣ 1X

k=1

Log(uk)
⌘

converges, and it is non-zero because it is in the image of exp. It follows that the
product

Q
1

k=1 uk converges to exp
�P

1

k=1 Log(uk)
�
.

Conversely, suppose that
Q

1

k=1 uk converges to P . Then P 6= 0 by the defini-
tion of convergence. First, we consider the case that P /2 (�1, 0). Then Log is
continuous at P , and so the limit

lim
n!1

Log
⇣ nY

k=1

uk

⌘
= Log

⇣
lim
n!1

nY

k=1

uk

⌘
= Log(P )
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exists. Let

cn = Log
⇣ nY

k=1

uk

⌘
=

nX

k=1

Log(uk) + 2mn⇡i,

so that limn!1 cn = Log(P ). Notice that

cn � cn�1 = Log(un) + 2⇡i(mn �mn�1)

for all n > 2. As limn!1 un = 1 from Proposition B.4, and Log is continuous at 1,
it follows that

lim
n!1

2⇡i(mn �mn�1)

= lim
n!1

cn � lim
n!1

cn�1 � lim
n!1

Log(un) = �Log
⇣
lim
n!1

un

⌘
= �Log(1) = 0.

As the mn are integers, this limit implies that the sequence (mn)1n=1 is eventually
constant. That is, there is an m 2 Z, such that for all sufficiently large n 2 Z+, we
have mn = m and thus

cn =
nX

k=1

Log(uk) + 2m⇡i.

Hence, the sum

1X

k=1

Log(uk) = lim
n!1

nX

k=1

Log(uk) = lim
n!1

cn � 2m⇡i = Log(P )� 2m⇡i

converges.
Finally, we handle the case that P 2 (�1, 0). Now �P 2 (0,1) is an infinite

product with the factors of P and the extra factor �1. By the previous case, we
have

Log(�1) +
1X

k=1

Log(uk) = Log(�P )� 2m⇡i

for some integer m. But Log(�1) = ln|�1|+ iArg(�1) = ⇡i, and also

Log(�P ) = ln|�P |+ iArg(�P ) = ln|P | = ln|P |+ iArg(P )� ⇡i = Log(P )� ⇡i

as P 2 (�1, 0). Hence

1X

k=1

Log(uk) = Log(P )� 2(m+ 1)⇡i.

Remark B.8. It follows that all of the theory of infinite sums that we are fa-
miliar with can also be applied to infinite products. For example, if the seriesP

1

k=1 Log(uk) is absolutely convergent, then it satisfies generalised commutativity
and associativity. By the previous proposition, it follows that the infinite productQ

1

k=1 uk also satisfies generalised commutativity and associativity.
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Definition B.9. Let (uk)1k=1 be a sequence of non-zero complex numbers. We say
that the infinite product

Q
1

k=1 uk is absolutely convergent if the corresponding sumP
1

k=1 Log(uk) is absolutely convergent.
Henceforth, it will be convenient to write the factors uk of our infinite products

as 1 + ak, where the ak are complex numbers such that ak 6= �1.
Proposition B.10. Let (ak)1k=1 be a sequence of complex numbers with ak 6= �1
for all k 2 Z+. Then the series

P
1

k=1 Log(1 + ak) converges absolutely if and only
if the series

P
1

k=1 ak converges absolutely.

Proof. If a 2 C and |a| 6 1
2 , then the inequality

1

2
|a| 6 |Log(1 + a)| 6 3

2
|a| (B.0.1)

holds. Indeed, it follows from the chain of inequalities

��|Log(1 + a)|� |a|
�� 6 |Log(1 + a)� a| =

����
1X

n=2

(�a)n

n

����

6
1X

n=2

|a|n

n
6 |a|2

2

1X

n=2

|a|n�2 =
|a|2

2
·

1

1� |a|
6

1
2 |a|

2
· 2 =

1

2
|a|

where we have used the following results in order: the reverse triangle inequality;
the Taylor series expansion

Log(1� z) = �

1X

n=1

zn

n
,

which has radius of convergence 1 > 1
2 , evaluated at z = �a; the triangle inequality;

the inequality 1
n
6 1

2 which holds for all n > 2; the formula for a geometric series
with ratio |a|; and the inequality

1 =
1

1
6 1

1� |a|
6 1

1/2
= 2

which holds because 1 > 1� |a| > 1
2 .

If
P

1

k=1 Log(1 + ak) converges absolutely, then so does
Q

1

k=1(1 + ak) (Proposi-
tion B.7), and so 1+ak ! 1 as k ! 1 (Proposition B.4). Hence ak ! 0 as k ! 1,
and thus for sufficiently large k we have |ak| 6 1

2 . The series
P

1

k=1 ak converges ab-
solutely by comparison with 2

P
1

k=1|Log(1 + ak)|, using the left-hand inequality of
(B.0.1). Conversely, if

P
1

k=1 ak converges absolutely, then ak ! 0 as k ! 1, hence
|ak| 6 1

2 for sufficiently large k, and so the series
P

1

k=1 Log(uk) converges absolutely
by comparison with 3

2

P
1

k=1|ak|, using the right-hand inequality of (B.0.1).

Corollary B.11. Assume the same notation as the previous proposition. Then the
infinite product

Q
1

k=1(1 + ak) converges absolutely if and only if the series
P

1

k=1 ak
converges absolutely.
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Proof. This follows directly by combining Proposition B.7 and Proposition B.10.

Corollary B.12. Assume the same notation as Corollary B.11. Then the productQ
1

k=1(1+ak) converges absolutely if and only if the product
Q

1

k=1(1+|ak|) converges.

Proof. From Corollary B.11, the absolute convergence of the product
Q

1

k=1(1+ ak)
is equivalent to the convergence of the series

P
1

k=1|ak| =
P

1

k=1

��|ak|
��, which in turn

is equivalent to the absolute convergence of the product
Q

1

k=1

�
1+ |ak|

�
. It remains

to show that if the product
Q

1

k=1

�
1 + |ak|

�
converges, then it converges absolutely.

By Proposition B.7, it suffices to show that if the series
P

1

k=1 Log
�
1+|ak|

�
converges

then the series
P

1

k=1

��Log
�
1+|ak|

��� also converges. As 1+|ak| is real and 1+|ak| > 1,
we have Log

�
1 + |ak|

�
= ln

�
1 + |ak|

�
> 0, and so

��Log
�
1 + |ak|

��� = Log
�
1 + |ak|

�
.

Hence the two series of interest are equal.

Proposition B.13. Let (uk)1k=1 be a sequence of non-zero complex numbers. The
product

Q
1

k=1 uk converges if and only if the product
Q

1

k=1 u
�1
k

converges, in which
case

1Y

k=1

u�1
k

=
⇣ 1Y

k=1

uk

⌘�1

.

Additionally, the product
Q

1

k=1 uk is absolutely convergent if and only if the productQ
1

k=1 u
�1
k

is absolutely convergent.

Proof. Suppose that the product
Q

1

k=1 uk converges. Then its limit is non-zero
(Definition B.1), and so the function z 7!

1
z

is continuous at z =
Q

1

k=1 uk. Hence

lim
n!1

nY

k=1

u�1
k

= lim
n!1

⇣ nY

k=1

uk

⌘�1

=
⇣ 1Y

k=1

uk

⌘�1

,

and the limiting value is non-zero as it is a reciprocal. Thus the product
Q

1

k=1 u
�1
k

converges to (
Q

1

k=1 uk)�1.
Now, let ak = uk � 1 for each k 2 Z+. Suppose that the product

Q
1

k=1 uk =Q
1

k=1(1+ak) converges absolutely. Then the series
P

1

k=1 ak converges absolutely by
Corollary B.11. By Proposition B.4, we know that |ak| 6 1

2 for k sufficiently large.
If |ak| 6 1

2 , then 1� |ak| > 1� 1
2 = 1

2 , and so by the reverse triangle inequality we
have

|ak + 1| > ||ak|� 1| = 1� |ak| >
1

2
.

Hence, for k sufficiently large,
����

1

ak + 1
� 1

���� =
����

ak
ak + 1

���� 6 2|ak|.

It follows that the series
P

1

k=1

⇣
1

ak+1 � 1
⌘

converges absolutely by inequality com-
parison with 2

P
1

k=1|ak|. Hence
Q

1

k=1 uk =
Q

1

k=1(1 + ak)�1 converges absolutely by
Corollary B.11.

The converses hold by replacing each uk with u�1
k

in the above arguments.
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The next proposition is about a special kind of infinite product known as a
(generalised) Euler product. We will need the following notation. Let I denote the
set of sequences i = (ik)1k=1 of non-negative integers for which only finitely many of
the integers ik are non-zero. For each positive integer m, let

Im = {i 2 I : im 6= 0 and ik = 0 for all k > m},

and set I0 = {(0, 0, . . .)}. Then (Im)1m=0 is a partition of I. For each m > 0,
the map from Im to Nm which projects a sequence onto its first m coordinates is
injective, and so Im is countable because Nm is countable. Hence I is a countable
union of countable sets, and so is itself countable. Hence infinite sums and products
indexed over I may be interpreted in the sense described in Remark 2.36, provided
that they are absolutely convergent. Note that if (ak)1k=1 is a sequence of complex
numbers and i 2 I, then the product ai11 a

i2
2 · · · is actually a finite product because

only finitely many of the exponents ik are non-zero. In the case that i 2 Im, we
actually have ai11 a

i2
2 · · · = ai11 a

i2
2 · · · aim

m
because ik = 0 for all k > m.

Proposition B.14. Assume the notation from the preceding paragraph. Let (ak)1k=1

be a sequence of complex numbers such that |ak| < 1 for all positive integers k. Let

S =
X

i2I

ai11 a
i2
2 · · · and P =

1Y

k=1

(1� ak)
�1.

Then S is absolutely convergent if and only if P is absolutely convergent, in which
case S = P .

Proof. For each positive integer m, let

Sm =
mX

k=0

X

i2Ik

ai11 a
i2
2 · · · and Pm =

mY

k=1

(1� ak)
�1.

Fix a positive integer m. Then we have the following chain of equalities:

Pm = (1� a1)
�1(1� a2)

�1
· · · (1� am)

�1

(1)
=
⇣X

i12N

ai11

⌘⇣X

i22N

ai22

⌘
· · ·

⇣ X

im2N

aim
m

⌘

(2)
=

X

(i1,i2,...,im)2Nm

ai11 a
i2
2 · · · aim

m

(3)
=

X

i2
Sm

k=0 Ik

ai11 a
i2
2 · · ·

(4)
=

mX

k=0

X

i2Ik

ai11 a
i2
2 · · ·

= Sm,

and the inner series of Sm are all absolutely convergent. Indeed, we provide justi-
fication for each numbered equality below.
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(1) For each k, as |ak| < 1, the geometric series on the second line with ratio ak
converges absolutely, and so equals the corresponding factor (1� ak)�1 of Pm

on the first line.
(2) We have

⇣X

i12N

ai11

⌘⇣X

i22N

ai22

⌘
=
X

i12N

⇣
ai11
X

i22N

ai22

⌘
=
X

i12N

⇣X

i22N

ai11 a
i2
2

⌘
,

where the absolute convergence of all outer and inner sums is a consequence
of the fact that a constant multiple of an absolutely convergent series is ab-
solutely convergent. By generalised associativity (Theorem 2.39), we have

X

i12N

⇣X

i22N

ai11 a
i2
2

⌘
=

X

(i1,i2)2N2

ai11 a
i2
2 ,

where the sum on the right-hand side is absolutely convergent. Repeating this
argument finitely many times, we obtain equality (2) where the series on the
third line is absolutely convergent.

(3) As
S

m

k=0 Ik is the set of all sequences of natural numbers i where ij = 0 for
all j > m, the map from

S
m

k=0 Ik to Nm which projects sequences onto their
first m coordinates is a bijection, and so the fourth line is just a reindexing
of the third.

(4) By generalised associativity (Theorem 2.39), the inner and outer series on the
fifth line are absolutely convergent, and equality (4) holds.

We have just shown, for all positive integers k that
P

i2Ik
ai11 a

i2
2 · · · is absolutely

convergent, and that Sm = Pm for all positive integers m. If, additionally, one of
the limits limm!1 Sm or limm!1 Pm exists, then both exist, and

1X

k=0

X

i2Ik

ai11 a
i2
2 · · · = lim

m!1

Sm = lim
m!1

Pm =
1Y

k=1

(1� ak)
�1.

Now S is absolutely convergent if and only if the sum
P

i2I
|a1|i1 |a2|i2 · · · con-

verges. By generalised associativity (Theorem 2.39), this is equivalent to the con-
vergence of all of the inner sums

P
i2Ik

|a1|i1 |a2|i2 · · ·, as well as the outer sumP
1

k=0

P
i2Ik

|a1|i1 |a2|i2 · · ·. Applying the result stated in the previous paragraph,
but with ak replaced by |ak|, this is equivalent to the convergence of the product
Q

1

k=1

⇣
1� |ak|

⌘�1

. Finally, from Corollary B.11 and Proposition B.13, we have the
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following equivalences:

1Y

k=1

(1� ak)
�1 converges absolutely

()

1Y

k=1

(1� ak) converges absolutely

()

1X

k=1

|�ak| =
1X

k=1

���|ak|
�� converges absolutely

()

1Y

k=1

�
1� |ak|

�
converges absolutely

()

1Y

k=1

�
1� |ak|

��1 converges absolutely.

Remark B.15. The direction “P absolutely convergent implies S absolutely con-
vergent”, is exactly Lemma 2 from Chapter 7 in Marcus’ “Number theory” [28], and
this is the only direction we will need in our proof of Chebotarev’s density theorem.
On the other hand, most treatments of the Riemann zeta function start with the
absolute convergence of the sum

1X

n=1

1

ns

whenever s 2 C and Re(s) > 1 (observe that this sum is a p-series with p = Re(s)),
and use this to deduce the absolute convergence of the corresponding Euler product

Y

p

✓
1�

1

ps

◆�1

for the same s. We chose to write our proof in such a way to reveal the symmetry
between the absolute convergence of S and P .
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[14] G. Frobenius. ‘Über Beziehungen zwischen den Primidealen eines algebrais-
chen Körpers und den Substitutionen seiner Gruppe’. In: Sitzungsberichte der
Königlich Preussischen Akademie der Wissenschaften zu Berlin (XXXII June
1896), pp. 689–705.

[15] Larry Joel Goldstein. Analytic number theory. Prentice-Hall Englewood Cliffs,
NJ, 1971.

[16] G. H. Hardy and Marcel Riesz. The General Theory of Dirichlet’s Series. 18.
London: Cambridge University Press, 1915.

[17] Internet Archive. url: https://archive.org (visited on 30/09/2019).
[18] J. L. W. V. Jensen. ‘Om Rækkers Konvergens’. In: Tidsskrift for Mathematik.

5th ser. 2 (1884), pp. 63–72.
[19] Konrad Knopp. Theory and Application of Infinite Series. London and Glas-

gow: Blackie & Son Limited, 1954.
[20] Serge Lang. Algebra. 3rd ed. Vol. 211. Graduate Texts in Mathematics. Springer

Science & Business Media, 2002.
[21] Serge Lang. Algebraic number theory. 2nd ed. Vol. 110. Graduate Texts in

Mathematics. Springer Science & Business Media, 1994. doi: 10.1007/978-
1-4612-0853-2.

[22] Serge Lang. Complex Analysis. 4th ed. Vol. 103. Graduate Texts in Mathem-
atics. Springer Science & Business Media, 1999. doi: 10.1007/978-1-4757-
3083-8.

[23] Serge Lang. Undergraduate Algebra. 3rd ed. Springer Science & Business Me-
dia, 2005.

[24] G. Lejeune Dirichlet. G. Lejeune Dirichlet’s Werke. Ed. by Georg Reimer.
Vol. 1. Berlin, 1889.

[25] Lejeune-Dirichlet. ‘Beweis des Satzes, dass jede unbegrenzte arithmetische
Progression, deren erstes Glied und Differenz ganze Zahlen ohne gemeinsch-
aftlichen Factor sind, unendlich viele Primzahlen enthält’. In: Mathemat-
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